首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
2.
3.
4.
Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1 , GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.  相似文献   

5.
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.  相似文献   

6.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   

7.
Regarding mutations of PROP1 (Prophet of POU1F1) gene significantly associating with combined pituitary hormone deficiency (CPHD) in human patients and animals, PROP1 gene is a novel important candidate gene for detecting genetic variation and growth, reproduction, metabolism traits selection and breeding. The aim of this study was to detect PROP1 gene mutation of the exon 1–3 and its association with wool traits in 345 Chinese Merino sheep. In this study, on the basis of PCR-SSCP and DNA sequencing methods, ten novel SNPs within the sheep PROP1 gene, namely, AY533708: g.45A > G resulting in Glu15Glu, g.1198A > G, g.1341G > C resulting in Arg63Ser, g.1389G > A resulting in Ala79Ala, g.1402C > T resulting in Leu84Leu, g.1424A > G resulting in Asn91Ser, g.1522C > T, g.1556A > T, g.1574T > C, g.2430C > G were reported. In addition, association analysis showed that three genotypes of P4 fragment were significantly associated with fiber diameter in the analyzed population (P = 0.044). These results strongly suggested that polymorphisms of the PROP1 gene could be a useful molecular marker for sheep breeding and genetics through marker-assisted selection (MAS).  相似文献   

8.
The objective of this study was to analyze the effects of single and combined genotypes of MC4R and POU1F1 genes in Chinese well-known indigenous chicken (Langshan chicken) population. Genetic variants within MC4R gene and POU1F1 gene were screened through PCR-SSCP and DNA sequencing methods. A C/T mutation at nt 944 in MC4R gene (NC_006089.2:g. 944C>T) and a G/A mutation at nt 3109 in POU1F1 gene (NC_006088.2:g. 3109 G>A) were identified. Associations between the mutations of the two genes with two production traits were analyzed. The results showed that, at MC4R locus, individuals with BB and AB genotypes had highly significantly higher body weight at 16 weeks (p < 0.01) than did those with the AA genotype. And, individuals within AA and AB genotypes had significantly higher egg numbers at 300 days (p < 0.05). At POU1F1 locus, individuals with CD genotype had higher body weight at 16 weeks and egg numbers at 300 days (p < 0.05). Furthermore, combined genotypes from these two loci were found to be associated with egg numbers at 300 days (p < 0.05). The individuals within combined genotype AB/CD had higher egg production. Therefore, variations identified within the MC4R and POU1F1genes are suitable for future use in identifying chickens with the genetic potential of higher body weight and reproductive traits, at least in the population of Langshan chickens.  相似文献   

9.
Recent advances in our knowledge of pituitary development, acquired mainly from animal models, have enhanced our understanding of the aetiology of isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD), as well as several syndromic forms of growth hormone deficiency (GHD). A number of developmental genes known to be important for organ commitment and cell differentiation and proliferation (HESX1, LHX3, LHX4, PROP1 and PIT1) have been implicated in CPHD with or without other syndromic features. Phenotypes associated with these genetic mutations and their inheritance may be highly variable. Functional analyses of these mutations reveal valuable insights into the function of the proteins and hence into the effect of these mutations on phenotype. Novel insights have been gained into the mechanisms whereby these genes are associated with particular phenotypes as a result of murine transgenesis, e.g. type II autosomal dominant GHD. Mutations within known genes account for a small proportion of cases of IGHD and CPHD, suggesting the role of other as yet unidentified genetic and environmental factors. Hence, genetic testing will in the future have a greater role to play in understanding the mechanisms leading to particular hypopituitary phenotypes and also in predicting the evolution of these disorders. There is, however, no substitute for careful delineation of the phenotype prior to undertaking genetic studies.  相似文献   

10.
11.
12.
13.
14.

Purpose

Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies.

Methods

Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing.

Results

Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D).

Conclusions

Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics.  相似文献   

15.
16.
17.
In China, approximately 30,000 babies are born with hearing impairment each year. However, the molecular factors causing congenital hearing impairment in the Xiamen area of Fujian province have not been evaluated. To provide accurate genetic testing and counseling in the Xiamen area, we investigated the molecular etiology of non-syndromic deafness in a deaf population from Xiamen. Unrelated students with hearing impairment (n = 155) who attended Xiamen Special Education School in Fujian Province were recruited for this study. Three common deafness-related genes, GJB2, SLC26A4, and mtDNA12SrRNA, were analyzed using all-exon sequencing. GJB2 mutations were detected in 27.1% (42/155) of the entire cohort. The non-syndromic hearing loss (NSHL) hotspot mutations c.109G>A (p.V37I) and c.235delC were found in this population, whereas the Caucasian hotspot mutation c.35delG was not. The allelic frequency of the c.109G>A mutation was 9.03% (28/310), slightly higher than that of c.235delC (8.39%, 26/310), which is the most common GJB2 mutation in most areas of China. The allelic frequency of the c.109G>A mutation was significantly higher in this Xiamen’s deaf population than that in previously reported cohorts (P = 0.00). The SLC26A4 mutations were found in 16.77% (26/155) of this cohort. The most common pathogenic allele was c.IVS7-2A>G (6.13%, 19/310), and the second most common was the c.1079C>T (p.A360V) mutation (1.94%, 6/310) which has rarely been reported as a hotspot mutation in other studies. The mutation rate of mtDNA12SrRNA in this group was 3.87% (6/155), all being the m.A1555G mutation. These findings show the specificity of the common deaf gene-mutation spectrum in this area. According to this study, there were specific hotspot mutations in Xiamen deaf patients. Comprehensive sequencing analysis of the three common deaf genes can help portray the mutation spectrum and develop optimal testing strategies for deaf patients in this area.  相似文献   

18.
19.
20.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号