首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines.  相似文献   

2.
Plasmodium falciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the α class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the α-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having α-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

3.
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.  相似文献   

4.
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.  相似文献   

5.
  1. Download : Download high-res image (68KB)
  2. Download : Download full-size image
Highlights
  • •Characterization of 12 proteins from across the P. falciparum sexual-stages as possible TBV targets.
  • •Heterologously expressed recombinant proteins recapitulate native parasite epitopes.
  • •Some recombinant proteins exhibit immunoreactivity when tested against sera from individuals from malaria-endemic Burkina Faso and Mali.
  • •Purified IgG against the antigen enolase moderately inhibits parasite development in the mosquito midgut.
  相似文献   

6.
The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL) domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII) which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs) termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175– glycophorin A complex.  相似文献   

7.

Background

Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1.

Methodology/Findings

We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies.

Conclusions/Significance

Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.  相似文献   

8.
9.
10.

Background

One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting.

Methods and Findings

We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-142 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-119 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-23D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens.

Conclusions

These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies. Please see later in the article for the Editors'' Summary  相似文献   

11.
12.
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria.  相似文献   

13.
Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based ‘launch’ vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20–30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the ‘launch’ vector technology for the production of VLP-based recombinant vaccines against infectious diseases.  相似文献   

14.
The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.  相似文献   

15.

Background

To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE) of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes.

Methodology/Principal Findings

Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively.

Conclusion/Significance

This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were transcribed in infected but not sequestered erythrocytes.  相似文献   

16.
Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of [14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require.Pantothenate (vitamin B5) is an essential nutrient for the virulent human malaria parasite Plasmodium falciparum, required to support the rapid growth and replication of the parasite during the intraerythrocytic stage of its life cycle (13). In bacteria, plants, and mammalian tissues, pantothenate serves as a precursor of coenzyme A (CoA),3 an essential enzyme cofactor involved in numerous metabolic reactions in the cell. Pantothenate is converted to CoA via five universal enzyme-mediated steps (see Fig. 1).Open in a separate windowFIGURE 1.The CoA biosynthesis pathway.Several decades ago, Trager (4) showed that pantothenate supported the survival of the avian malaria parasite Plasmodium lophurae during its development within duck erythrocytes in vitro. Trager (5, 6) later demonstrated, however, that CoA, and not pantothenate, stimulated exoerythrocytic growth of the intraerythrocytic stage of P. lophurae, and proposed that avian malaria parasites are incapable of metabolizing pantothenate to CoA, and instead rely on CoA synthesized by the host erythrocyte. In support of this proposal, CoA biosynthesis enzymes are readily detectable in duck erythrocytes, but appear to be absent from P. lophurae parasites isolated from their host erythrocyte (7, 8). Pantothenate is therefore required by the P. lophurae-infected duck erythrocyte for CoA biosynthesis within the host cell and not the parasite itself.By contrast with nucleated avian erythrocytes, mammalian erythrocytes are thought to be incapable of CoA biosynthesis. In the only study on the subject, Annous and Song (9) reported that although pantothenate is phosphorylated within rat erythrocytes (the first step in CoA biosynthesis), there is no evidence for the subsequent steps of the CoA biosynthesis pathway. Saliba et al. (10) confirmed that human erythrocytes similarly phosphorylate pantothenate, but did not investigate whether CoA synthesis also occurs in the cells. A lack of CoA biosynthesis in mammalian erythrocytes would seemingly place the burden of CoA synthesis squarely on malaria parasites that infect mammals (such as P. falciparum), contrary to the situation in birds. Although Saliba et al. (10) have shown that P. falciparum is capable of performing the first step in CoA biosynthesis, it remains to be established whether the parasite can metabolize the 4′-phosphopantothenate generated from pantothenate to CoA or, like P. lophurae, relies on CoA synthesized in the host erythrocyte for its normal growth and replication.In this study we followed the metabolism of pantothenate within uninfected human erythrocytes, P. falciparum-infected human erythrocytes, and isolated P. falciparum parasites. We provide evidence that both uninfected erythrocytes (which we show do take up pantothenate, albeit very slowly) and P. falciparum-infected erythrocytes synthesize CoA from pantothenate. CoA biosynthesis is, however, dramatically higher in the P. falciparum-infected cell. Furthermore, we show that P. falciparum parasites synthesize CoA in the absence of the host erythrocyte, and hence, by contrast with avian malaria parasites, the human malaria parasite does not rely on the host erythrocyte for CoA.  相似文献   

17.
The global agenda for malaria eradication would benefit from development of a highly efficacious vaccine that protects against disease and interrupts transmission of Plasmodium falciparum. It is likely that such a vaccine will be multi-component, with antigens from different stages of the parasite life cycle. In this review, inclusion of blood stage antigens in such a vaccine is discussed. Erythrocyte binding-like (EBL) and P. falciparum reticulocyte binding-like (PfRh) proteins are reviewed with respect to their function in erythrocyte invasion, their role in eliciting antibodies contributing to protective immunity and reduction of invasion, leading subsequently to inhibition of parasite multiplication.  相似文献   

18.
Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P.?falciparum. During the intraerythrocytic life cycle of P.?falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an?atypical miRNA activity, which may represent?a unique host defense strategy against complex eukaryotic pathogens.  相似文献   

19.
The bisquaternary bisnaphthalimides are a versatile class of compounds being active against the malaria parasite Plasmodium falciparum in the lower nanomolar range of concentration combined with no cytotoxicity. The series of compounds is designed as choline analogues and interfering agents of the phosphatidylcholine biosynthesis. The qualitative analysis of the structure–activity relationships (SAR) revealed the importance of a long methylene middle chain of at least 8 methylene groups between the two bisquaternary naphthalimides or a monoquaternary naphthalimide consisting of a long alkyl chain attached to the positively charged nitrogen atom. Since the SARs are different from reported biscationic antimalarial drugs the mode of action remains to be elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号