首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Neurofilaments (NFs) are prominent components of large myelinated axons. Previous studies have suggested that NF number as well as the phosphorylation state of the COOH-terminal tail of the heavy neurofilament (NF-H) subunit are major determinants of axonal caliber. We created NF-H knockout mice to assess the contribution of NF-H to the development of axon size as well as its effect on the amounts of low and mid-sized NF subunits (NF-L and NF-M respectively). Surprisingly, we found that NF-L levels were reduced only slightly whereas NF-M and tubulin proteins were unchanged in NF-H–null mice. However, the calibers of both large and small diameter myelinated axons were diminished in NF-H–null mice despite the fact that these mice showed only a slight decrease in NF density and that filaments in the mutant were most frequently spaced at the same interfilament distance found in control. Significantly, large diameter axons failed to develop in both the central and peripheral nervous systems. These results demonstrate directly that unlike losing the NF-L or NF-M subunits, loss of NF-H has only a slight effect on NF number in axons. Yet NF-H plays a major role in the development of large diameter axons.  相似文献   

2.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

3.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

4.
Applying self-consistent field theory, we consider a coarse-grained model for the polymerlike projections of neurofilament (NF) proteins that form a brush structure around neurofilaments. We focus on effects of molecular composition, which is the relative occurrence of NF-H, NF-M, and NF-L proteins, on the organization of NF projection domains. We consider NF brushes with selectively truncated projections, and with a varied ratio L:H:M of constituent tails. Our conclusion is that the NF brush structure is remarkably tolerant with respect to the variation in M and H chains. Results compare favorably with experimental data on model animals, provided that due attention is paid on the level of phosphorylation of the KSP repeats.  相似文献   

5.
Using the numerical model of Scheutjens and Fleer we investigated, on a self-consistent field level, the equilibrium structure of the neurofilament brush formed by the projection domains of NF-H, NF-M, and NF-L proteins. Although the actual amino-acid sequences in the projection domains are coarse-grained, the different (realistic) solubilities of amino-acid residues and the specific distribution of its intrinsic charges inside the arms of the NF proteins are taken explicitly into account. We collect strong evidence that the electrostatic interactions are a dominant force that controls the NF brush structure. There exists a remarkable spatial separation of the H, M, and L tails. In a dephosphorylated NF we found confined and flowerlike conformations for the H and M projection domains, respectively. We demonstrate that the ionization of KSP repeats in NF proteins triggers a conformational transition in the H tail that leads to the expulsion of its terminal (KEP) domain to the periphery of the NF brush. We argue that the phosphorylation of the NF proteins in axons can both increase the interfilament distance and stabilize cross bridges between neurofilaments.  相似文献   

6.
To examine the mechanism through which neurofilaments regulate the caliber of myelinated axons and to test how aberrant accumulations of neurofilaments cause motor neuron disease, mice have been constructed that express wild-type mouse NF-H up to 4.5 times the normal level. Small increases in NF-H expression lead to increased total neurofilament content and larger myelinated axons, whereas larger increases in NF-H decrease total neurofilament content and strongly inhibit radial growth. Increasing NF-H expression selectively slow neurofilament transport into and along axons, resulting in severe perikaryal accumulation of neurofilaments and proximal axonal swellings in motor neurons. Unlike the situation in transgenic mice expressing modest levels of human NF-H (Cote, F., J.F. Collard, and J.P. Julien. 1993. Cell. 73:35-46), even 4.5 times the normal level of wild-type mouse NF-H does not result in any overt phenotype or enhanced motor neuron degeneration or loss. Rather, motor neurons are extraordinarily tolerant of wild-type murine NF-H, whereas wild-type human NF-H, which differs from the mouse homolog at > 160 residue positions, mediates motor neuron disease in mice by acting as an aberrant, mutant subunit.  相似文献   

7.
《The Journal of cell biology》1988,107(6):2689-2701
The 200-kD subunit of neurofilaments (NF-H) functions as a cross-bridge between neurofilaments and the neuronal cytoskeleton. In this study, four phosphorylated NF-H variants were identified as major constituents of axons from a single neuron type, the retinal ganglion cell, and were shown to have characteristics with different functional implications. We resolved four major Coomassie Blue-stained proteins with apparent molecular masses of 197, 200, 205, and 210 kD on high resolution one- dimensional SDS-polyacrylamide gels of mouse optic axons (optic nerve and optic tract). Proteins with the same electrophoretic mobilities were radiolabeled within retinal ganglion cells in vivo after injecting mice intravitreally with [35S]methionine or [3H]proline. Extraction of the radiolabeled protein fraction with 1% Triton X-100 distinguished four insoluble polypeptides (P197, P200, P205, P210) with expected characteristics of NF-H from two soluble neuronal polypeptides (S197, S200) with few properties of neurofilament proteins. The four Triton- insoluble polypeptides displayed greater than 90% structural homology by two-dimensional alpha-chymotryptic iodopeptide map analysis and cross-reacted with four different monoclonal and polyclonal antibodies to NF-H by immunoblot analysis. Each of these four polypeptides advanced along axons primarily in the Group V (SCa) phase of axoplasmic transport. By contrast, the two Triton-soluble polypeptides displayed only a minor degree of alpha-chymotryptic peptide homology with the Triton-insoluble NF-H forms, did not cross-react with NF-H antibodies, and moved primarily in the Group IV (SCb) wave of axoplasmic transport. The four NF-H variants were generated by phosphorylation of a single polypeptide. Each of these polypeptides incorporated 32P when retinal ganglion cells were radiolabeled in vivo with [32P]orthophosphate and each cross-reacted with monoclonal antibodies specifically directed against phosphorylated epitopes on NF-H. When dephosphorylated in vitro with alkaline phosphatase, the four variants disappeared, giving rise to a single polypeptide with the same apparent molecular mass (160 kD) as newly synthesized, unmodified NF-H. The NF-H variants distributed differently along optic axons. P197 predominated at proximal axonal levels; P200 displayed a relatively uniform distribution; and P205 and P210 became increasingly prominent at more distal axonal levels, paralleling the distribution of the stationary neurofilament network.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.  相似文献   

9.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   

10.
Dendrites play important roles in neuronal function. However, the cellular mechanism for the growth and maintenance of dendritic arborization is unclear. Neurofilaments (NFs), a major component of the neuronal cytoskeleton, are composed of three polypeptide subunits, NF-H, NF-M, and NF-L, and are abundant in large dendritic trees. By overexpressing each of the three NF subunits in transgenic mice, we altered subunit composition and found that increasing NF-H and/or NF-M inhibited dendritic arborization, whereas increasing NF-L alleviated this inhibition. Examination of cytoskeletal organization revealed that increasing NF-H and/or NF-M caused NF aggregation and dissociation of the NF network from the microtubule (MT) network. Increasing NF-H or NF-H together with NF-M further reduced NFs from dendrites. However, these changes were reversed by elevating the level of NF-L with either NF-H or NF-M. Thus, NF-L antagonizes NF-H and NF-M in organizing the NF network and maintaining a lower ratio of NF-H and NF-M to NF-L is critical for the growth of complex dendritic trees in motor neurons.  相似文献   

11.
Neurofilaments (NFs) are prominent components of large myelinated axons and probably the most abundant of neuronal intermediate filament proteins. Here we show that mice with a null mutation in the mid-sized NF (NF-M) subunit have dramatically decreased levels of light NF (NF-L) and increased levels of heavy NF (NF-H). The calibers of both large and small diameter axons in the central and peripheral nervous systems are diminished. Axons of mutant animals contain fewer neurofilaments and increased numbers of microtubules. Yet the mice lack any overt behavioral phenotype or gross structural defects in the nervous system. These studies suggest that the NF-M subunit is a major regulator of the level of NF-L and that its presence is required to achieve maximal axonal diameter in all size classes of myelinated axons.Neurofilaments (NFs)1 are the most prominent cytoskeletal components in large myelinated axons and probably the most abundant and widely expressed of neuronal intermediate filament (IF) proteins. In mammals, NFs are composed of three proteins termed light (NF-L), mid-sized (NF-M), and heavy (NF-H) NFs. These proteins are encoded by separate genes (17, 21, 27) and have apparent molecular weights of ∼68,000, 150,000, and 200,000, respectively, when separated on SDS-PAGE gels.Like all IFs, NF proteins contain a relatively well-conserved α helical rod domain of ∼310 amino acids with variable NH2-terminal and COOH-terminal regions (33). In NFs, the COOH-terminal domains are greatly extended relative to other IFs and contain a glutamic acid–rich region of unknown significance and in NF-M and NF-H a series of lysine-serine-proline-valine (KSPV) repeats (21, 27) which are major sites of phosphorylation in both proteins. In axons, NFs form bundles of 10-nm diameter “core filaments” with sidearms consisting of phosphorylated COOH-terminal tail sequences of NF-M and NF-H (12, 13, 26, 29) that have been thought to extend and maintain the spacing between filaments (4). Similar sidearm extensions are not found in IFs composed of other IF proteins such as desmin, glial fibrillary acidic protein, or vimentin. In NFs assembled in vitro, all three subunits appear to be incorporated into core filaments (12, 26). Thus, current models of NF assembly suggest that NF-M and NF-H are the major components of sidearm extensions and are anchored to a core of NF-L via their central rod domains.Although much is known about NF structure and assembly, questions remain concerning NF function. A primarily structural role for NFs is suggested by their prominence in large axons (41). Small unmyelinated axons contain few NFs (9) and some small neurons lack morphologically identifiable NFs (3, 32, 38). Most dendrites contain few NFs and only in dendrites of large neurons such as motor neurons are NFs numerous (41).A role for NFs as a major determinant of axonal diameter has long been suspected from the correlation between NF content in axonal cross sections and axonal caliber (16). This correlation persists during axonal degeneration and regeneration (14) and changes in NF transport correlate temporally with alterations in the caliber of axons in regenerating nerves (15). Additionally, fewer NFs occur at nodes of Ranvier where axonal diameter is reduced (1), and certain NF epitopes are found only in regions where maximal axonal caliber has developed (6).Several animal models have supported a role for NFs in establishing axonal diameter. One is a Japanese quail (Quiverer) with a spontaneous mutation in NF-L that generates a truncated protein incapable of forming NFs (31). Homozygous mutants contain no axonal NFs and exhibit a mild generalized quivering. In these animals, radial growth of myelinated axons is severely attenuated (44) with a consequent reduction in axonal conduction velocity (37). In transgenic mice, Eyer and Petersen (8) expressed an NF-H/β-galactosidase fusion protein in which the COOH terminus of NF-H was replaced by β-galactosidase. NF inclusions were found in the perikarya of neurons and the resulting NF aggregates blocked all NF transport into axons resulting in axons with reduced calibers. More recently, Zhu et al. (45) have shown that mice lacking NFs due to a targeted disruption of the NF-L gene have diminished axonal calibers and delayed maturation of regenerating myelinated axons.Although these models clearly suggest a role for NFs in establishing axonal diameter, they contribute only limited information concerning the roles of the individual NF subunits. During development, NF-L and NF-M are coexpressed initially whereas NF-H appears later (4). Studies in transgenic mice have found that overexpressing mouse NF-L leads to an increased density of NFs, but no increase in axonal caliber (25). More recently, Xu et al. (43) overexpressed each of the mouse NF subunits either individually or in various combinations. They found that only when NF-L was overexpressed in combination with either NF-M or NF-H was axonal growth significantly increased. Interestingly, when NF-M and NF-H were overexpressed alone or in combination with one another, radial axonal growth was inhibited.It also remains incompletely understood how NF stoichiometries are regulated and the degree to which any one NF subunit is dominant in this regulation. Recently, conflicting data has appeared concerning the role of NF-M in regulating NF stoichiometries. We found that overexpression of human NF-M in transgenic mice increases the levels of endogenous mouse NF-L protein and decreases the extent of phosphorylation of NF-H (39). These results imply that NF-M may play a dominant role in regulating the levels of NF-L protein, the relative stoichiometry of NF subunits, and the phosphorylation status of NF-H. However different results were obtained by Wong et al. (40) who found that overexpression of mouse NF-M in transgenic mice did not effect the levels of axonal NF-L, and although it reduced NF-H, it did not effect its phosphorylation status.To further address these issues we generated mice bearing a null mutation in the mouse NF-M gene. Here we describe the effects of this mutation on nervous system development with particular reference to the role of the NF-M subunit in specifying axonal diameter and its effect on levels of the remaining NF subunits.  相似文献   

12.
Abstract: To understand the assembly characteristics of the high-molecular-weight neurofilament protein (NF-H), carboxyl- and amino-terminally deleted NF-H proteins were examined by transiently cotransfecting mutant NF-H constructs with the other neurofilament triplet proteins, low- and middle-molecular-weight neurofilament protein (NF-L and NF-M, respectively), in the presence or absence of cytoplasmic vimentin. The results confirm that NF-H can coassemble with vimentin and NF-L but not with NF-M into filamentous networks. Deletions from the amino-terminus show that the N-terminal head is necessary for the coassembly of NF-H with vimentin, NF-L, or NF-M/vimentin. However, headless NF-H or NF-H from which the head and a part of the rod is removed can still incorporate into an NF-L/vimentin network. Deletion of the carboxyl-terminal tail of NF-H shows that this region is not essential for coassembly with vimentin but is important for coassembly with NF-L into an extensive filamentous network. Carboxyl-terminal deletion into the α-helical rod results in a dominant-negative mutant, which disrupts all the intermediate filament networks. These results indicate that NF-L is the preferred partner of NF-H over vimentin and NF-M, the head region of NF-H is important for the formation of NF-L/NF-H filaments, and the tail region of NF-H is important to form an extensive network of NF-L/NF-H filaments.  相似文献   

13.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

14.
Abstract: The high-molecular-weight neurofilament protein (NF-H) is highly phosphorylated in vivo, with estimates as high as 16–51 mol of Pi/mol of protein. Most of the phosphorylation sites are thought to be located on Ser residues in multiple KSP repeats, in the carboxy-terminal tail region of the molecule. Because the extent and site-specific patterns of tail domain phosphorylation are believed to modulate neurofilament structure and function, it becomes essential to identify the endogenous sites of phosphorylation. In this study, we have used selective proteolytic cleavage procedures, Pi determinations, microsequencing, and mass-spectral analysis to determine the endogenously phosphorylated sites in the NF-H tail isolated from rat spinal cord. Twenty Ser residues in NF-H carboxy-terminal tail were analyzed; nine of these, all located in KSP repeats, were phosphorylated. No detectable phosphorylation could be identified in any of the 11 "non-KSP" Ser residues that were examined. KSPXKX, KSPXXX, and KSPXXK motifs were found to be phosphorylated. In addition, a 27-kDa KSP-rich domain, containing 43 virtually uninterrupted KSPXXX repeats, was isolated from the tail domain and found to contain between 30 and 35 mol of Pi/mol of protein. This domain appeared to be highly resistant to endoproteinase Glu-C digestion, although it contains a large number of glutamate residues. It could be proteolyzed, however, after dephosphorylation. This suggests that phosphorylation of the tail domain may contribute to neurofilament stability in vivo. A neuronal-derived protein kinase that specifically phosphorylates only KSPXKX motifs in neurofilaments has been reported. The presence of extensively phosphorylated KSPXXX repeats in NF-H in vivo suggests the existence of yet another, unidentified kinase(s) with specificity for KSPXXX motifs.  相似文献   

15.
《The Journal of cell biology》1994,126(4):1031-1046
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation- dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150- microns level and further increased a total of threefold by the 1,200- microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl- terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.  相似文献   

16.
Abstract: To investigate the role of phosphorylation in the turnover and transport of neurofilament (NF) proteins in vivo, we studied their solubility properties and axonal transport in the rat sciatic nerve using phosphatase inhibitors to minimize dephosphorylation during preparation. About 20% of the 200-kDa subunit (NF-H) in the axon was soluble in the 1% Triton-containing buffer under the present conditions, whereas this amount was less and more variable in the absence of phosphatase inhibitors. The 68-kDa subunit (NF-L) was exclusively insoluble and not affected by the inhibitors. Such selective solubilization of NF-H by phosphorylation differed significantly from the in vitro phosphorylation with cyclic AMP-dependent protein kinase, which resulted in NF disassembly. The carboxy-terminal phosphorylation state of NF-H probed with the phosphorylation-sensitive antibodies was also not directly related to solubility. The solubility of NF-H did not differ along the nerve. In contrast, the solubility of l -[35S]methionine-labeled, transported NF-H was lowest at the peak of radioactivity. Higher solubility at the leading edge, regardless of its location along the nerve, indicates that NF-H solubility is positively correlated with the rate of NF transport.  相似文献   

17.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

18.
Abstract: Neurofilament (NF) protein [high molecular mass (NF-H)] is extensively phosphorylated in vivo. The phosphorylation occurs mainly in its characteristic KSP (Lys-Ser-Pro) repeat motifs. There are two major types of KSP motifs in the NF-H tail domain: KSPXKX and KSPXXX. Recent studies by two different laboratories have demonstrated the presence of a cdc2-like kinase [cyclin-dependent kinase-5 (cdk5)] in nervous tissue that selectively phosphorylates KSPXKX and XS/TXK motifs in NF-H and lysine-rich histone (H1). This article describes the identification of phosphatases dephosphorylating three different substrates: histone (H1), NF-H in a NF preparation, and a bacterially expressed C-terminal tail domain of NF-H, each containing KSPXKX repeats phosphorylated in vitro by cdk5. Among various phosphatases identified, protein phosphatase (PP) 2A from rabbit skeletal muscle appeared to be the most effective phosphatase in in vitro assays. Three phosphatase activity peaks—P1, P2, and P3—were partially purified from frozen rat spinal cord by ion exchange and size exclusion column chromatography and then characterized on the basis of biochemical, pharmacological, and immunochemical studies. One of the three peaks was identified as PP2A, whereas the others were mixtures of both PP2A and PP1. These three peaks could dephosphorylate cdk5-phosphorylated 32P-histone (H1), 32P-NF-H in the NF preparation, and 32P-NF-H tail fusion protein. These studies suggest the involvement of PP2A or a PP2A-like activity in the regulation of the phosphorylation state of KSPXKX motifs in NF-H.  相似文献   

19.
Abstract: Postlesion plasticity of neuronal processes might contribute to secondary spontaneous seizures after kainic acid administration. In this study, neurofilament (NF) proteins were examined following intraperitoneal injection of kainic acid, and special reference was given to temporal changes in quantity and quality of the NF light (NF-L) and heavy (NF-H) subunits. A pronounced decrease in phosphorylation-related immunoreactivity of NF-H occurred as early as 1 day after the injection in the amygdala/pyriform cortex, hippocampus, striatum, and dorsal cerebral cortex. A shift of NF-H from the phosphorylated to nonphosphorylated form was evident in immunoblots, suggesting dephosphorylation contributed to the decrease. Decreases in NF-L and phosphorylated NF-H contents in the limbic structure at 3 days were correlated with the increasing kainic acid doses from 2.5 to 10 mg/kg. The degradation pattern in immunoblots with antibodies against NF-L indicated that the decrease in NF-L was probably due to calcium-activated proteolysis. NF-L and phosphorylated NF-H contents secondarily increased from 9 days onward, with ∼20% above the control level of phosphorylated NF-H immunoreactivity at 27 days in the amygdala/pyriform cortex and ventral hippocampus. Immunohistochemical examination of the hippocampus revealed that an increase of NF staining in the mossy fiber system may contribute to the NF recovery in this region. Furthermore, the temporal changes of NF-L and phosphorylated NF-H contents were positively correlated with those of the neuronal cell adhesion molecule, a neuritic growth cone marker, substantiating postlesion regenerative reactions of NF proteins. Functional consequences of the NF plasticity remain to be identified.  相似文献   

20.
In neuronal systems thus far studied, newly synthesized neurofilament subunits rapidly associate with the Triton-insoluble cytoskeleton and subsequently undergo extensive phosphorylation. However, in the present study we demonstrate by biochemical and immunological criteria that NB2a/d1 neuroblastoma cells also contain Triton-soluble, extensively phosphorylated 200-kDa high molecular weight neurofilament subunits (NF-H). High-speed centrifugation (100,000 g) of the Triton-soluble fraction for 1 h sedimented some, but not all, soluble NF-H subunits; immunoelectron microscopic analyses of the resulting pellet indicated that a portion of the NF-H subunits in this fraction are assembled into (Triton-soluble) neurofilaments. When cells were pulse labeled for 15 min with [35S]methionine, radiolabel was first associated with the Triton-soluble 200-kDa NF-H variants. Because only extensively phosphorylated NF-H subunits migrate at 200 kDa, whereas hypophosphorylated subunits migrate instead at 160 kDa, these findings suggest that some newly synthesized subunits were phosphorylated before they polymerized. In pulse-chase analyses, radiolabeled 200-kDa NF-H migrated into the 100,000 g particulate fraction of Triton-soluble extracts before its arrival in the Triton-insoluble cytoskeleton. Undifferentiated cells, which do not possess axonal neurites and lack a significant amount of Triton-insoluble, extensively phosphorylated NF-H, contain a sizeable pool of Triton-soluble extensively phosphorylated NF-H subunits and polymers. We interpret these data to indicate that the integration of newly synthesized NF-H into the cytoskeleton occurs in a progression of distinct stages, and that assembly of NF-H into neurofilaments and integration into the Triton-insoluble cytoskeleton are not prerequisites for the incorporation of certain phosphate groups on these polypeptides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号