首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
细胞衰老是生物界普遍存在的现象。肿瘤细胞是一类摆脱细胞周期束缚,突破Hayflick界限,能够无限增殖而不衰老的细胞。癌症是一种与细胞衰老密切相关的疾病。从进化的角度来看,衰老对于生物体是有益的,可以导致细胞不可逆的周期阻滞,被认为是一种自主的肿瘤抑制机制。在恶性增殖的癌细胞中,在胞外及胞内多种刺激下,如端粒缩短、DNA损伤、氧化应激以及化疗药物的处理等,都会出现细胞周期阻滞,生长迟缓等细胞衰老现象。诱导肿瘤细胞衰老也被认为是一种治疗癌症的有效手段。衰老细胞可以向胞外分泌数十种因子,维持细胞自身衰老表型,并影响周围细胞的生长,这种特性被称为衰老相关的分泌表型(SASP)。本文详细综述细胞衰老的形态学特征与分子标记物及检测方法,细胞衰老的信号调控通路(p53-p21,p16-pRB和PTEN-p27),以及细胞衰老与恶性肿瘤发生发展的关系等。尤其是应激压力诱导下的细胞衰老在癌症治疗中的潜在作用,并进一步讨论当下流行的促衰老癌症治疗的靶点与药物以及存在的问题,以期为今后的研究提供新思路和新方向。  相似文献   

2.
何艳  刘静 《生命科学》2010,(5):411-415
细胞衰老是细胞脱离细胞周期并不可逆地丧失增殖能力后进入的一种相对稳定的状态,虽然基本代谢过程仍然能够维持,但丧失合成DNA及增殖能力。细胞衰老具有复制衰老、癌基因诱导的衰老及加速衰老等类型。衰老细胞具有细胞体积大而扁平、细胞停止分裂及SA-β-gal反应阳性等明显特性,复制衰老还具有端粒缩短到无法维持染色体结构完整性的特征。目前已知,p53-p21和p16-pRB在细胞衰老过程中起着重要的调控作用,细胞衰老对肿瘤的形成起着天然的屏障作用。通过抑制端粒酶活性来诱导肿瘤细胞衰老和通过胞外刺激或化学治疗药物诱导肿瘤细胞发生衰老样生长停滞,已成为抗肿瘤研究的新思路。  相似文献   

3.
细胞衰老是指细胞生长永久阻滞于细胞周期的G1期,出现形态、生化及表观遗传的变化特性.细胞衰老由端粒缩短、DNA损伤、缺氧或癌基因失调等因素引起,它是抵抗肿瘤发生的主要壁垒.原癌基因c-myc编码转录因子,可调控很多基因,进而影响细胞周期演进、衰老、凋亡、代谢等生物学过程.c-Myc蛋白与细胞衰老密切相关,它可影响hTERT、p16、p53、Bmi-1和p27等衰老相关基因转录.c-Myc不仅可抑制复制性衰老,也能抑制癌基因诱发的衰老.c-Myc抑制ras诱导的细胞衰老取决于CDK2.c-Myc失活不仅能够诱导非恶性细胞(如人成纤维细胞)衰老,而且在许多肿瘤细胞中也可诱导衰老.然而,与ras基因类似,在特定条件下,c-Myc也可诱导细胞衰老,并可促进维氏综合症(Werner syndrome,WRN)缺失细胞的衰老.  相似文献   

4.
细胞衰老是指细胞生长永久阻滞于细胞周期的G1期,出现形态、生化及表观遗传的变化特性.细胞衰老由端粒缩短、DNA损伤、缺氧或癌基因失调等因素引起,它是抵抗肿瘤发生的主要壁垒.原癌基因c-myc编码转录因子,可调控很多基因,进而影响细胞周期演进、衰老、凋亡、代谢等生物学过程.c-Myc蛋白与细胞衰老密切相关,它可影响hTERT、p16、p53、Bmi-1和p27等衰老相关基因转录.c-Myc不仅可抑制复制性衰老,也能抑制癌基因诱发的衰老.c-Myc抑制ras诱导的细胞衰老取决于CDK2.c-Myc失活不仅能够诱导非恶性细胞(如人成纤维细胞)衰老,而且在许多肿瘤细胞中也可诱导衰老.然而,与ras基因类似,在特定条件下,c-Myc也可诱导细胞衰老,并可促进维氏综合症(Werner syndrome,WRN)缺失细胞的衰老.  相似文献   

5.
目的:筛选诱导巨核细胞倍体化药物,研究倍体化细胞的抗死亡机制,探索促进倍体化细胞死亡的用药方法。方法:采用不同药物处理巨核细胞白血病细胞系Dami细胞,检测细胞倍性、衰老、死亡及相关分子的变化。结果:Nocodazole、SP600125与SU6668可阻断Dami细胞增殖,诱导倍体化,促进细胞衰老,短期诱导不影响细胞活力。分子水平表明,抗凋亡分子存活蛋白表达上调,衰老相关分泌表型调控因子NF-κB(p65)活性降低。持续的药物诱导可致细胞死亡。结论:诱导巨核细胞倍体化抑制恶性增殖,促进细胞衰老发生,存活蛋白与NF-κB(p65)共同抑制倍体化和衰老细胞的死亡,而持续的药物诱导可促进细胞死亡,可作为急性巨核细胞白血病的治疗策略。  相似文献   

6.
目的:细胞衰老是维持机体稳态的一种重要机制,表达SA-β-gal被认为是衰老细胞的一种特异性的标志,但有研究表明在衰老细胞中SA-β-gal染色阳性只是衰老细胞的溶酶体变大的结果,为了探究SA-β-gal的表达与细胞衰老之间的具体关系,我们验证了参与调节衰老细胞表达SA-β-gal的信号通路及SA-β-gal的表达情况是否会对细胞衰老的过程产生影响.方法:肿瘤细胞用低剂量的阿霉素处理24小时后,再分别给予不同的小分子抑制剂继续作用4天,观察SA-β-gal染色阳性的细胞数目及SA-β-gal表达与否对于衰老细胞在分泌细胞因子、生长阻滞等细胞生物学功能上的影响.结果:在阿霉素诱导细胞发生衰老的过程中,TGFβ抑制剂SB431542能够抑制衰老细胞表达SA-β-gal,而SA-β-gal表达的缺失并不影响细胞衰老的其他特征性改变.结论:低剂量的阿霉素作用肿瘤细胞后,细胞会进入衰老的状态.在细胞衰老的过程中,TGFβ受体Ⅰ的抑制剂SB431542可以抑制衰老细胞表达SA-β-gal,但是SA-β-gal的缺失表达并不影响细胞衰老的过程及衰老细胞的其他特性,如:不可逆的生长阻滞、分泌有活性的细胞因子等.结果表明:SA-β-gal并不能作为衰老细胞的特异性标志.  相似文献   

7.
在大部分的肿瘤中都发现有癌基因的活化,癌基因的活化被认为是导致肿瘤发生的重要原因.然而,在野生型细胞内,癌基因的活化可以诱导细胞衰老,称为癌基因诱导的细胞衰老(oncogene-induced senescence, OIS),从而抑制进一步的肿瘤发生.因而,癌基因的活化具有诱导衰老或肿瘤的双向性.DNA损伤调控反应(DNA damage checkpoint response, DDR)是细胞应对DNA损伤时感应损伤,从而延迟或阻滞细胞周期进程的一种分子信号传递通路,是诱导细胞衰老的重要机制.癌基因的活化可以引发DNA损伤信号的产生,从而激活DDR,诱导细胞衰老.在DDR异常时,癌基因的激活可引发DNA的过度复制与细胞的过度增殖,并导致基因组不稳定性的积累,最终导致肿瘤发生.DDR的完整性决定了癌基因诱导的双向性.DDR在癌基因诱导中的重要作用,提示了保持和恢复DDR的完整性可以作为肿瘤预防和治疗的新方向.  相似文献   

8.
细胞衰老与肿瘤发生   总被引:3,自引:0,他引:3  
胡兵  安红梅  沈克平 《生命科学》2008,20(3):447-449
细胞衰老(cell senescence)是指细胞在信号转导作用下不可逆地脱离细胞周期并丧失增殖能力后进入的一种相对稳定的状态。细胞衰老有增殖衰老与早熟衰老两种形式:增殖衰老由端粒缩短激发的信号转导激发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F信号通路密切相关;早熟衰老由细胞内在或外在急慢性应激信号引发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F或CDKN2a(p16^ink4A)/pRB/E2F信号通路相关。目前研究已经证实早熟衰老是细胞在癌变过程中的天然屏障,是继DNA修复、细胞凋亡后的第三大细胞内在抗癌机制,在机体防止肿瘤形成中起重要作用。  相似文献   

9.
miRNAs是一类负调控基因表达的内源性非编码小分子RNA,在细胞衰老过程中发挥重要作用. 细胞衰老是指可增殖细胞在各种应激下出现细胞周期阻滞,并且丧失增殖能力,进入一种不可逆的、相对稳定的状态. p53、p21、p16、SIRT1、胰岛素/IGF-1及mTOR等蛋白是衰老相关信号通路中的重要分子,参与细胞衰老过程. 研究表明,miRNAs可以通过调控这些衰老相关蛋白所在的信号通路,促进或延缓细胞衰老. 本文综述细胞衰老相关的miRNAs,以及它们对衰老相关信号通路的影响,为深化认识衰老和衰老相关疾病的分子机制奠定基础.  相似文献   

10.
作为一种肿瘤抑制因子,p53可协调多种反应,包括细胞周期阻滞、DNA修复、抗氧化作用、抗血管生成作用、自噬、衰老和凋亡等。p53主要通过调节其靶基因的转录发挥其肿瘤抑制功能,但p53是癌症中最常见的突变基因之一,当p53发生突变时,就会导致其功能丧失进而导致肿瘤细胞生长。p53已成为癌症治疗中最重要和最有吸引力的药物靶点之一,因此以p53为靶点产生了许多癌症治疗方式。本文回顾了靶向p53信号通路在基因治疗、靶向治疗以及免疫治疗中的研究,以期为了解靶向p53的研究提供新思路。  相似文献   

11.
Normal cells in a culture enter a nondividing state after a finite number of population doubling, which is termed replicative senescence, whereas cancer cells have unlimited proliferative potential and are thought to exhibit an immmortal phenotype by escaping from senescence. The p21 gene (also known as sdi1), which encodes the cyclin-dependent kinase inhibitor, is expressed at high levels in senescent cells and contributes to the growth arrest. To examine if the p21sdi1 gene transfer could induce senescence in human cancer cells, we utilized an adenoviral vector-based expression system and four human cancer cell lines differing in their p53 status. Transient overexpression of p21sdi1 on cancer cells induced quiescence by arresting the cell cycle at the G1 phase and exhibited morphological changes, such as enlarged nuclei as well as a flattened cellular shape, specific to the senescence phenotype. We also showed that p21sdi1-transduced cancer cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Moreover, the polymerase chain reaction-based assay demonstrated that levels of telomerase activity were significantly lower in p21sdi1-expressing cells compared to parental cancer cells. These observations provide the evidence that p21sdi1 overexpression could induce a senescence-like state and reduce telomerase activity in human cancer cells, suggesting that these novel p21sdi1 functions may have important implications for anticancer therapy.  相似文献   

12.
Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59]  相似文献   

13.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

14.
细胞衰老与肿瘤治疗   总被引:1,自引:0,他引:1  
人口老龄化是全世界都面临的重大挑战,随着老年人口的增加,肿瘤等衰老相关疾病发病率随之升高.流行病学调查结果显示,大约2/3的新增肿瘤患者为65岁以上的老年人,并且这一比例在不断攀升.细胞衰老是指在DNA损伤或癌基因失调等一系列条件下引起的稳定的细胞周期阻滞,并伴有形态、生化及表观遗传的改变.大量研究证明细胞衰老对抑制潜在癌细胞增殖具有重要作用.然而,目前研究认为除了抑制肿瘤发生,细胞衰老也可能促进肿瘤的演进,细胞衰老对肿瘤发挥了双刃剑作用.因此,深入了解细胞衰老与肿瘤之间的联系,充分利用细胞衰老对肿瘤抑制功能,规避其对肿瘤的促进作用可为肿瘤的治疗提供更多可能的选择.  相似文献   

15.
Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor‐positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib‐induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib‐induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence‐like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse‐free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells.  相似文献   

16.
17.

Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.

  相似文献   

18.
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.  相似文献   

19.
We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape senescence due to mutations or epimutations in the senescent checkpoint pathway. A historical review of neosis-like events is presented and implications of neosis in relation to the current dogmas of cancer biology are discussed. Genesis and repetitive re-genesis of Raju cells with transient "stemness" via neosis are of vital importance to the origin and continuous growth of tumors, a process that appears to be common to all types of tumors. We suggest that unlike current anti-mitotic therapy of cancers, anti-neotic therapy would not cause undesirable side effects. We propose a rational hypothesis for the origin and progression of tumors in which neosis plays a major role in the multistep carcinogenesis in different types of cancers. We define cancers as a single disease of uncontrolled neosis due to failure of senescent checkpoint controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号