首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents and assesses the hypothesis that the proton leak across the mitochondrial inner membrane is an important contributor to standard metabolic rate, and that increases in the amount of mitochondrial inner membrane may be important in causing changes in proton leak and in the standard metabolic rate. The standard metabolic rate of an animal is known to be a function of body mass, phylogeny and thyroid status, and is largely attributed to the metabolically active internal organs. The total area of mitochondrial inner membrane in these organs correlates well with standard metabolic rate over a wide range of body masses in both ectotherms and endotherms. In hepatocytes isolated from rats, proton leak across the mitochondrial inner membrane accounts for about 30% of the resting oxygen consumption, and the distribution of control over respiration suggests that changes in mitochondrial inner membrane surface area will be accompanied by significant changes in the proton leak. This change in the leak will result in significant changes in resting oxygen consumption, but changes in ATP demand may also have a role to play in determining resting respiration rate. Extrapolation of these results to other tissues and other animals suggests that the hypothesis has the potential to explain a substantial proportion of the variation in standard metabolic rate with body mass, phylogeny and thyroid status. However, in most cases the quantitative contribution of proton leak compared to cellular ATP turnover has yet to be experimentally determined.  相似文献   

2.
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non‐linearity of the relationship between MR and body mass. This ‘statistical’ view must be replaced with the life‐history perspective that ‘allows’ organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation ‘decisions’ that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those ‘decisions’ form a wealth of life‐history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single‐cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life‐history evolution is the best way forward.  相似文献   

3.
We measured the energetic cost of metamorphosis in the fruitfly, Drosophila melanogaster. Metabolic rates decreased rapidly in the first 24 h and remained low until shortly before eclosion, when the rates increased rapidly, thus creating a U-shaped metabolic curve. The primary fuel used during metamorphosis was lipid, which accounted for >80% of total metabolism. The total energy consumed during metamorphosis was lowest at 25 °C, compared to 18 and 29 °C, due to differences in metabolic rates and the length of pupal development. Temperature differentially affected metabolic rates during different stages of metamorphosis. Prepupal and late pupal stages exhibited typical increases in metabolic rate at high temperatures, whereas metabolic rates were independent of temperature during the first 2/3 of pupal development.We tested two hypotheses for the underlying cause of the U-shaped metabolic curve. The first hypothesis was that pupae become oxygen restricted as a result of remodeling of the larval tracheal system. We tested this hypothesis by exposing pupae to hypoxic and hyperoxic atmospheres, and by measuring lactic acid production during normoxic development. No evidence for oxygen limitation was observed. We also tested the hypothesis that the U-shaped metabolic curve follows changes in metabolically active tissue, such that the early decrease in metabolic rates reflects the histolysis of larval tissues, and the later increase in metabolic rates is associated with organogenesis and terminal differentiation of adult tissues. We assayed the activity of a mitochondrial indicator enzyme, citrate synthase, and correlated it with tissue-specific developmental events during metamorphosis. Citrate synthase activity exhibited a U-shaped curve, suggesting that the pattern of metabolic activity is related to changes in the amount of potentially active aerobic tissue.  相似文献   

4.
Mitochondria in cells isolated from the hepatopancreas of aestivating land snails (Helix aspersa) consume oxygen at 30% of the active control rate. The aim of this study was to investigate whether the lower respiration rate is caused by a decrease in the density of mitochondria or by intrinsic changes in the mitochondria. Mitochondria occupied 2% of cellular volume, and the mitochondrial inner membrane surface density was 17 microm(-1), in cells from active snails. These values were not different in cells from aestivating snails. The mitochondrial protein and mitochondrial phospholipid contents of cells were also similar. There was little difference in the phospholipid fatty acyl composition of mitochondria isolated from metabolically depressed or active snails, except for arachidonic acid, which was 18% higher in mitochondria from aestivating snails. However, the activities of citrate synthase and cytochrome c oxidase in mitochondria isolated from aestivating snails were 68% and 63% of control, respectively. Thus the lower mitochondrial respiration rate in hepatopancreas cells from aestivating snails was not caused by differences in mitochondrial volume or surface density but was associated with intrinsic changes in the mitochondria.  相似文献   

5.
The question of how the scaling of metabolic rate with body mass (M) is achieved in animals is unresolved. Here, we tested the cell metabolism hypothesis and the organ size hypothesis by assessing the mass scaling of the resting metabolic rate (RMR), maximum metabolic rate (MMR), erythrocyte size, and the masses of metabolically active organs in the crucian carp (Carassius auratus). The M of the crucian carp ranged from 4.5 to 323.9 g, representing an approximately 72-fold difference. The RMR and MMR increased with M according to the allometric equations RMR = 0.212M 0.776 and MMR = 0.753M 0.785. The scaling exponents for RMR (b r) and MMR (b m) obtained in crucian carp were close to each other. Thus, the factorial aerobic scope remained almost constant with increasing M. Although erythrocyte size was negatively correlated with both mass-specific RMR and absolute RMR adjusted to M, it and all other hematological parameters showed no significant relationship with M. These data demonstrate that the cell metabolism hypothesis does not describe metabolic scaling in the crucian carp, suggesting that erythrocyte size may not represent the general size of other cell types in this fish and the metabolic activity of cells may decrease as fish grows. The mass scaling exponents of active organs was lower than 1 while that of inactive organs was greater than 1, which suggests that the mass scaling of the RMR can be partly due to variance in the proportion of active/inactive organs in crucian carp. Furthermore, our results provide additional evidence supporting the correlation between locomotor capacity and metabolic scaling.  相似文献   

6.
Basic assumptions of two distributive network models designed to explain the 3/4 power scaling between metabolic rate and body mass are re-analysed. It is shown that these models could have consistently accounted for the observed scaling patterns if and only if body mass M had scaled as L4, where L is body length, in the model of Banavar et al. (1999, Nature 399, 130-132), or if spatial volume VF occupied by the distributive network had scaled as M3/4 in the model of West et al. (1997, Science 276, 122-126). Lack of agreement between these predictions and observational evidence invalidates both models rendering them mathematically controversial. It is further shown that consideration of distributive networks can nevertheless yield realistic values of scaling exponents under the major assumption that living organisms are designed so as to keep the mass-specific metabolic rate of important functional tissues in the vicinity of a size-independent optimum value. Mass-specific metabolic rate of subsidiary mechanical tissues can be small and vary with body mass. Different patterns of spatial distribution of metabolically active biomass within the organism result in different patterns of allometric scaling. From the available evidence the presumable optimum value of mass-specific metabolic rate of living matter is estimated to be in the vicinity of 1-10 W kg-1.  相似文献   

7.
Among animals, insects have the highest mass-specific metabolic rates; yet, during intermolt development the tracheal respiratory system cannot meet the increased oxygen demand of older stage insects. Using locomotory performance indices, whole body respirometry, and X-ray imaging to visualize the respiratory system, we tested the hypothesis that due to the rigid exoskeleton, an increase in body mass during the intermolt period compresses the air-filled tracheal system, thereby, reducing oxygen delivery capacity in late stage insects. Specifically, we measured air sac ventilation frequency, size, and compressibility in both the abdomen and femur of early, middle, and late stage sixth instar Schistocerca americana grasshoppers. Our results show that late stage grasshoppers have a reduced air sac ventilation frequency in the femur and decreased convective capacities in the abdomen and femur. We also used X-ray images of the abdomen and femur to calculate the total proportion of tissue dedicated to respiratory structure during the intermolt period. We found that late stage grasshoppers had a lower proportion of their body dedicated to respiratory structures, especially air sacs, which convectively ventilate the tracheal system. These intermolt changes make oxygen delivery more challenging to the tissues, especially critical ones such as the jumping muscle. Indeed, late stage grasshoppers showed reduced jump frequencies compared to early stage grasshoppers, as well as decreased mass-specific CO2 emission rates at 3 kPa PO2. Our findings provide a mechanism to explain how body mass changes during the intermolt period reduce oxygen delivery capacity and alter an insect’s life history.  相似文献   

8.
From electron micrographs we determined the ratio of mitochondrial to myofibril cross sectional area in cells of the first leg anterior depressor muscles of adult females of four spider species, each from a different genus. Species with more active web-monitoring tactics and greater tracheal supplies to their first legs have muscle cells that are better supplied with mitochondria than those with less active tactics and less well-developed tracheal systems. These results demonstrate that, even in homologous tissues of closely related species, mitochondrial supply can change to accommodate changes in metabolic activity. © 1992 Wiley-Liss, Inc.  相似文献   

9.
Mammalian birth is accompanied by profound changes in metabolic rate that can be described in terms of body size relationship (Kleiber's rule). Whereas the fetus, probably as an adaptation to the low intrauterine pO2, exhibits an "inappropriately" low, adult-like specific metabolic rate, the term neonate undergoes a rapid metabolic increase up to the level to be expected from body size. A similar, albeit slowed, "switching-on" of metabolic size allometry is found in human preterm neonates whereas animals that are normally born in a very immature state are able to retard or even suppress the postnatal metabolic increase in favor of weight gain and O2 supply. Moreover, small immature mammalian neonates exhibit a temporary oxyconforming behavior which enhances their hypoxia tolerance, yet is lost to the extent by which the size-adjusted metabolic rate is "locked" by increasing mitochondrial density. Beyond the perinatal period, there are no other deviations from metabolic size allometry among mammals except in hibernation where the temporary "switching-off" of Kleiber's rule is accompanied by a deep reduction in tissue pO2. This gives support to the hypothesis that the postnatal metabolic increase represents an "escape from oxygen" similar to the evolutionary roots of mitochondrial respiration, and that the overall increase in specific metabolic rate with decreasing size might contribute to prevent tissues from O2 toxicity.  相似文献   

10.
The allometric scaling of metabolic rate with organism body mass can be partially accounted for by differences in cellular metabolic rates. For example, hepatocytes isolated from horses consume almost 10-fold less oxygen per unit time as mouse hepatocytes [Porter and Brand, Am J Physiol Regul Integr Comp Physiol 269: R226-R228, 1995]. This could reflect a genetically programmed, species-specific, intrinsic metabolic rate set point, or simply the adaptation of individual cells to their particular in situ environment (i.e., within the organism). We studied cultured cell lines derived from 10 mammalian species with donor body masses ranging from 5 to 600,000 g to determine whether cells propagated in an identical environment (media) exhibited metabolic rate scaling. Neither metabolic rate nor the maximal activities of key enzymes of oxidative or anaerobic metabolism scaled significantly with donor body mass in cultured cells, indicating the absence of intrinsic, species-specific, cellular metabolic rate set points. Furthermore, we suggest that changes in the metabolic rates of isolated cells probably occur within 24 h and involve a reduction of cellular metabolism toward values observed in lower metabolic rate organisms. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms. To examine the effect of oxygen on steady-state cellular respiration rates, we grew cells under a variety of physiologically relevant oxygen regimens. Long-term exposure to higher medium oxygen levels increased respiration rates of all cells, consistent with the hypothesis that higher rates of oxygen delivery in smaller mammals might increase cellular metabolic rates.  相似文献   

11.
One of the central questions in physiological ecology is how energetic constraints affect organismal performance and the dynamics of ecological systems. Social insect colonies integrate the balance of supply and demand across levels of biological organization such that the individual components are simultaneously serving as the supply transport network and also the source of energetic demand. An increasing number of studies have demonstrated that the per‐capita metabolic rates of individuals within social insect colonies decrease with increasing colony size, a metabolic hypometry much like the pattern exhibited by individual organisms. An important question is thus, whether this scaling pattern is a result of an energetic supply constraint or evidence for an emergent economy of scale. This review synthesizes theoretical models and results from empirical studies on the scaling of resource supply and demand in social insect colonies. Scaling in biology is a powerful tool to unify the study of diverse concepts and organisms; increased integration of mechanistic realism into metabolic models will improve our understanding of the evolution of complex biological systems.  相似文献   

12.
Plants lack specialised organs and circulatory systems, and oxygen can fall to low concentrations in metabolically active, dense or bulky tissues. In animals that tolerate hypoxia or anoxia, low oxygen triggers an adaptive inhibition of respiration and metabolic activity. Growing potato tubers were used to investigate whether an analogous response exists in plants. Oxygen concentrations fall below 5% in the centre of growing potato tubers. This is accompanied by a decrease of the adenylate energy status, and alterations of metabolites that are indicative of a decreased rate of glycolysis. The response to low oxygen was investigated in more detail by incubating tissue discs from growing tubers for 2 hours at a range of oxygen concentrations. When oxygen was decreased in the range between 21% and 4% there was a partial inhibition of sucrose breakdown, glycolysis and respiration. The energy status of the adenine, guanine and uridine nucleotides decreased, but pyrophosphate levels remained high. The inhibition of sucrose breakdown and glycolysis was accompanied by a small increase of sucrose, fructose, glycerate-3-phosphate, phosphenolpyruvate, and pyruvate, a decrease of the acetyl-coenzymeA:coenzymeA ratio, and a small increase of isocitrate and 2-oxoglutarate. These results indicate that carbon fluxes are inhibited at several sites, but the primary site of action of low oxygen is probably in mitochondrial electron transport. Decreasing the oxygen concentration from 21% to 4% also resulted in a partial inhibition of sucrose uptake, a strong inhibition of amino acid synthesis, a decrease of the levels of cofactors including the adenine, guanine and uridine nucleotides and coenzymeA, and attenuated the wounding-induced increase of respiration and invertase and phenylalanine lyase activity in tissue discs. Starch synthesis was maintained at high rates in low oxygen. Anoxia led to a diametrically opposed response, in which glycolysis rose 2-fold to support fermentation, starch synthesis was strongly inhibited, and the level of lactate and the lactate:pyruvate ratio and the triose-phosphate:glycerate-3-phosphate ratio increased dramatically. It is concluded that low oxygen triggers (i) a partial inhibition of respiration leading to a decrease of the cellular energy status and (ii) a parallel inhibition of a wide range of energy-consuming metabolic processes. These results have general implications for understanding the regulation of glycolysis, starch synthesis and other biosynthetic pathways in plants, and reveal a potential role for pyrophosphate in conserving energy and decreasing oxygen consumption.  相似文献   

13.
Mammalian vasculature, and the analogous tracheal system in Drosophila, can respond dynamically to hypoxic conditions to maintain a constant supply of oxygen to peripheral tissues. In a recent study published in Cell, Linneweber et al ( 2014 ) reveal that tracheal plasticity can also be regulated by nutrient availability, through both systemic and local insulin signaling. They also show that specific neurons ennervating the intestine can respond to nutrient cues and direct long‐lasting changes in tracheal morphology that provide metabolic benefits for the organism.  相似文献   

14.
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.  相似文献   

15.
Metabolite gradients might guide mitochondrial localization in cells and angiogenesis in tissues. It is unclear whether they can exist in single cells, because the length scale of most cells is small compared to the expected diffusion times of metabolites. For investigation of metabolic gradients, we need experimental systems in which spatial patterns of metabolism can be systematically measured and manipulated. We used concentrated cytoplasmic extracts from Xenopus eggs as a model cytoplasm, and visualized metabolic gradients formed in response to spatial stimuli. Restriction of oxygen supply to the edge of a drop mimicked distance to the surface of a single cell, or distance from a blood vessel in tissue. We imaged a step-like increase of Nicotinamide adenine dinucleotide (NAD) reduction approximately 600 microm distant from the oxygen source. This oxic-anoxic switch was preceded on the oxic side by a gradual rise of mitochondrial transmembrane potential (Deltapsi) and reactive oxygen species (ROS) production, extending over approximately 600 microm and approximately 300 microm, respectively. Addition of Adenosine triphosphate (ATP)-consuming beads mimicked local energy sinks in the cell. We imaged Deltapsi gradients with a decay length of approximately 50-300 microm around these beads, in the first visualization of an energy demand signaling gradient. Our study demonstrates that mitochondria can pattern the cytoplasm over length scales that are suited to convey morphogenetic information in large cells and tissues and provides a versatile model system for probing of the formation and function of metabolic gradients.  相似文献   

16.
1. The proportion of metabolically active mass in the freshwater amphipod Gammarus fossarum was determined using different parameters [chemical oxygen demand (COD), total nitrogen (Ntot), total phosphorus (Ptot) and mass of chitinous cuticle]. 2. The results of linear regressions between body mass and body length, and measured parameters (COD, Ntot, Ptot) show high correlation coefficients for both fresh and the dry animals. The proportion of chitinous mass increased with body size. 3. Chemical analysis of Ptot in individuals appears to be the most appropriate parameter for quantitating the metabolically active tissues in animals. 4. The dependence of the intensity of electron transport system (ETS) activity per protoplasm, calculated from the Ptot and dry mass of animals, shows that large animals have the same ETS activity per unit of protoplasm as smaller ones. 5. We conclude that the chitinous mass is not the only factor which contributes to negative allometry of metabolic activity in G. fossarum.  相似文献   

17.
Verberk WC  Bilton DT 《PloS one》2011,6(7):e22610

Background

Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic.

Methodology/Principal Findings

Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels.

Conclusions/Significance

These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.  相似文献   

18.
Experiments were done on seven lambs between the ages of 10 and 24 days to investigate the effects of sleep on the cardiovascular and metabolic responses to a decrease in ambient temperature. Each lamb was anesthetized and instrumented for recordings of electrocorticogram, electro-oculogram, and nuchal electromyograms and measurements of cardiac output, systemic and pulmonic pressures and hemoglobin oxygen saturations as well as body core temperature. No sooner than three days after surgery, measurements were made during periods of quiet wakefulness, quiet sleep and active sleep at ambient temperatures of 25 degrees C and 18 degrees C. Decreasing the environmental temperature from 25 degrees C to 18 degrees C elicited a similar thermogenic response during quiet wakefulness, quiet sleep and active sleep as evidenced by an increase in total body oxygen consumption. The increased metabolic oxygen demand was met by an increase in systemic oxygen transport as well as by an increase in total body oxygen extraction. Since shivering was absent during active sleep, it is likely that nonshivering thermogenesis played a major role in the metabolic response. Our data provide evidence that sleep does not significantly alter the cardiovascular and metabolic responses to a modest decrease in ambient temperature in young lambs.  相似文献   

19.
Septic shock may be defined as a clinical entity wherein a patient has an inadequate peripheral metabolism in the presence of circulating bacteria. The demands for metabolic requirements of the tissues and hence for oxygen transport to these tissues are then markedly high. The average response to increased metabolism in such patients is a percentage increase in cardiac output that is comparable to the percentage increase in oxygen consumption while oxygen extraction rate does not change or even decreases in severe or/and advanced septic shock. This emphasizes the high priority placed by the body on the ability to increase blood flow from the heart in the presence of increased metabolic demands due to sepsis. Concerning the myocardium, oxygen consumption is low in hyper- and hypodynamic states of septic shock, probably and partially due to marked arterial vasodilatation. However, in hypodynamic states, the lower value of perfusion pressure may account for a decrease in myocardial oxygen supply, especially in subendocardial areas and may be responsible for myocardial ischaemia, more especially as myocardial oxygen extraction as well as systemic oxygen extraction is impaired. The goal of therapeutics is to improve oxygen availability through: (1) maintenance of haemoglobin levels and (2) increases in stroke volume using inotropic drugs since these drugs may produce a rise in myocardial oxygen supply higher than their drug-induced increase in oxygen requirements in hypodynamic states of septic shock.  相似文献   

20.
The 'supply' of substrates should match 'demand' for energy utilization and not limit it. Integration of supply to demand would be expected to occur during ontogeny. As a result of a short gestation and protracted lactation most development in marsupials occurs ex utero in a thermally stable pouch, hence there is an early reliance on atmospheric oxygen. This paper explores through allometry the matching of ventilation (supply) and rate of oxygen consumption (demand) in the tammar wallaby from birth to adulthood, covering four orders of magnitude and the transition from ectothermy to endothermy. The allometric exponent for the scaling equation for the rate of oxygen consumption in the ectothermic and endothermic phases of development was 0.78, the difference in intercept between the two equations being approximately 2.5-fold. A similar exponent and factorial increase in intercept was found for ventilation. Hence, convective requirement is mass independent throughout development, from ectothermy to endothermy, being similar to previously published values for the class Mammalia. Altogether, these results support the notion that, at rest, supply by ventilation is matched to demand for oxygen during postnatal development in the marsupial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号