首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The biochemical consequences of root hypoxia have been documented in many sink organs, but not extensively in fruit. Therefore, in the present study, the response to root hypoxia in tomato fruit (Solanum lycopersicum L.) was investigated at two developmental stages, during the cell division and the cell expansion phases. Our results showed that in dividing fruit, root hypoxia caused an exhaustion of carbon reserves and proteins. However, ammonium and major amino acids (glutamine, asparagine and γ–aminobutyric acid (GABA)) significantly accumulated. In expanding fruit, root hypoxia had no effect on soluble sugar, protein and glutamine contents, whereas starch content was significantly decreased, and asparagine and GABA contents slightly increased. Metabolite contents were well correlated with activities of the corresponding metabolising enzymes. Contrary to nitrogen metabolising enzymes (glutamine synthetase, asparagine synthetase and glutamate decraboxylase), the activities of enzymes involved in sugar metabolism (invertase, sucrose synthase, sucrose phosphate synthase and ADP glucose pyrophosphorylase) were significantly reduced by root hypoxia, in diving fruit. In expanding fruit, only a slight decrease in ADP glucose pyrophosphorylase and an increase in asparagine synthetase and glutamate decarboxylase activities were observed. Taken together, the present data revealed that the effects of root hypoxia are more pronounced in the youngest fruits as it is probably controlled by the relative sink strength of the fruit and by the global disturbance in plant functioning.  相似文献   

2.
3.
BackgroundPeatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem.MethodsHere, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients.ResultsRewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged.ConclusionsOur results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange.  相似文献   

4.
Forest productivity depends on nutrient supply, and sustained increases in forest productivity under elevated carbon dioxide (CO2) may ultimately depend on the response of microbial communities to changes in the quantity and chemistry of plant-derived substrates, We investigated microbial responses to elevated CO2 in a warm-temperate forest under free-air CO2 enrichment for 5 years (1997–2001). The experiment was conducted on three 30 m diameter plots under ambient CO2 and three plots under elevated CO2 (200 ppm above ambient). To understand how microbial processes changed under elevated CO2, we assayed the activity of nine extracellular enzymes responsible for the decomposition of labile and recalcitrant carbon (C) substrates and the release of nitrogen (N) and phosphorus (P) from soil organic matter. Enzyme activities were measured three times per year in a surface organic horizon and in the top 15 cm of mineral soil. Initially, we found significant increases in the decomposition of labile C substrates in the mineral soil horizon under elevated CO2; this overall pattern was present but much weaker in the O horizon. Beginning in the 4th year of this study, enzyme activities in the O horizon declined under elevated CO2, whereas they continued to be stimulated in the mineral soil horizon. By year 5, the degradation of recalcitrant C substrates in mineral soils was significantly higher under elevated CO2. Although there was little direct effect of elevated CO2 on the activity of N- and P-releasing enzymes, the activity of nutrient-releasing enzymes relative to those responsible for C metabolism suggest that nutrient limitation is increasingly regulating microbial activity in the O horizon. Our results show that the metabolism of microbial communities is significantly altered by the response of primary producers to elevated CO2. We hypothesize that ecosystem responses to elevated CO2 are shifting from primary production to decomposition as a result of increasing nutrient limitation.  相似文献   

5.
The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents). Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m), a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1) compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1). The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger export of more refractory organic matter due to the longer production season and the extension of the ice-free zone.  相似文献   

6.
Human physiological reactions to acute hypoxic hypoxia were studied. Analysis of simultaneously recorded parameters of various physiological systems showed the following: activation of the general antihypoxic defense system is based on the formation of an intricate structure of intra- and intersystemic relations of specific and nonspecific elements of adaptation that support vital body functions during environmental oxygen deficit. These specific elements become more important in more severe hypoxia, which suppresses metabolism in some organs and tissues because of redistribution of blood flow. These factors allow the body to function at a lower oxygen tension in its tissues owing to an increased efficiency of mitochondria as a result of changes in the kinetics of enzymes of the mitochondrial respiratory chain. In acute hypoxia, the structure of intra- and intersystemic relations is rather intricate; its functional hierarchy is maintained by stronger individual amplitude-related controlling factors and by modulation of their phase- and time-related links. Advanced stages of hypoxia are associated with disintegration of central regulatory mechanisms, which is manifested by disturbances in amplitude-frequency and spatiotemporal parameters of the brain bioelectrical activity, changes in phasic interactions between elements of regulatory mechanisms, and signs of deregulation and decompensation of vital functions. The interpretation of the results is based on the general theory of adaptation, Medvedev's idea of adaptation as a successive involvement of genetically predetermined and newly-formed regulatory programs of the brain, Anokhin's theory of functional systems, and modern concepts of molecular and biochemical mechanisms of hypoxia. It was concluded that artificial normobaric hypoxia is a unique, biologically adequate model that makes it possible to study the rearrangements in systemic and autonomic regulatory mechanisms in response to strictly determined changes in the environmental concentration of oxygen as a principal factor supporting life.  相似文献   

7.
Stands of groundnut were grown in computer-controlled glasshouseson water stored in an undisturbed soil profile. The maximumsaturation vapour pressure deficit (D) of the air was either1.0, 2.0, 2.5, or 3.0 kPa, and the mean air temperature was27 °C. Transpiration (E), determined from the soil water balance, wasstrongly dependent on D, because D influenced both the fractionof incident solar radiation intercepted by foliage (f) and thetranspiration rate per unit f (E/f). When D exceeded 2 kPa,canopy expansion was restricted and f reduced during early growth,but differences in f diminished as the canopies closed. E/fincreased with D, implying that any restriction of transpirationthrough stomatal closure at large D was outweighted by a steeperhumidity gradient from leaf to air. In all treatments E/f decreased as the soil profile dried. Saturationdeficit per se had little influence on the proportional reductionin E/f with time, even though soil water deficit was considerablygreater at large D. This lack of response occurred because plantscompensated for the greater evaporative demand by extractinglarger amounts of water from deep in the profile. Groundnut, Arachis hypogaea L., humidity, rooting depth, transpiration  相似文献   

8.
Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5º S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural and human induced disturbances, and promotes the development of dune vegetation as natural barriers can provide societal and conservation benefits in coastal ecosystems.  相似文献   

9.
Diatoms and other phytoplankton in coastal waters experience rapid pH changes in milieu due to high biological activities and/or upwelled CO2-rich waters. While CO2 concentrating mechanisms (CCMs) are employed by all diatoms tested to counter low CO2 availability in seawater, little is known how this mechanism responds to fast pH changes. In the present study, the model diatom Thalassiosira pseudonana was acclimated for 20 generations to low pH (7.81) at an elevated CO2 of 1000 μatm (HC) or to high pH (8.18) at ambient CO2 levels of 390 μatm (LC), then its physiological characteristics were investigated as cells were shifted from HC to LC or vice versa. The maximal electron transport rate (ETRmax) in the HC-acclimated cells was immediately reduced by decreased CO2 availability, showing much lower values compared to that of the LC-acclimated cells. However, the cells showed a high capacity to regain their photochemical performance regardless of the growth CO2 levels, with their ETRmax values recovering to initial levels in about 100 min. This result indicates that this diatom might modulate its CCMs quickly to maintain a steady state supply of CO2, which is required for sustaining photosynthesis. In addition, active uptake of CO2 could play a fundamental role during the induction of CCMs under CO2 limitation, since the cells maintained high ETR even when both intracellular and periplasmic carbonic anhydrases were inhibited. It is concluded that efficient regulation of the CCM is one of the key strategies for diatoms to survive in fast changing pH environment, e.g. for the tested species, which is a dominant species in coastal waters where highly fluctuating pH is observed.  相似文献   

10.
The relationship between functional redundancy and microbial community structure–diversity was examined using laboratory incubations to ensure constant environmental conditions. Serial dilutions of a sewage microbial community were prepared, used to inoculate sterile sewage, and maintained in batch culture. Probability suggests that dilution of the initial community should remove rare organism types, creating mixtures of cells differing in diversity. Regrowth of the diluted mixtures generated communities similar in abundance but differing in community structure and relative diversity (as determined using two DNA fingerprinting techniques and dilution-to-extinction analysis of community-level physiological profiles). The in situ function of each regrown community was examined by monitoring the short-term uptake of five different 14C-labeled compounds (glucose, acetate, citrate, palmitic acid, and an amino acid mixture). No significant differences were detected between treatments in either the rate of uptake of a substrate or the efficiency with which each community assimilated each compound. The fact that the activity of the original community was the same as that of a community regrown from an inoculum containing fewer that 100 cells (10−6 dilution) indicates that functional redundancy was quite high in this system. For each organism type eliminated during the dilution process, at least one of the remaining types was able to provide the same function at the same level as the lost one. Further research is necessary to determine what impact this functional redundancy may have on overall ecosystem function and stability.  相似文献   

11.
Stands of groundnut were grown in four glasshouses with themaximum saturation deficit (D) of the air limited to 1.0, 2.0,2.5 or 3.0 kPa. The soil was near field capacity when plantsemerged and no water was applied thereafter. In a fifth glasshouse,a stand was grown at low D on soil irrigated to field capacityevery few days. Developmental processes such as timing of flowering, peggingand pod formation were unaffected by D, but the numbers of branches,flowers and pegs were reduced in the drier treatments. Measurementsduring the first 30 d showed that in the drier treatments leafgrowth was reduced, and the partitioning of dry matter intoroots was enhanced. In the unirrigated stands, dry matter production in shoots wasreduced by 40 per cent as the maximum D increased from 1.0 to3.0 kPa. Growth was affected through reductions both in leafarea (and therefore light interception) and in the productivityper unit of light intercepted. These responses to D and soilwater were linked to changes in bulk water potential of leaves. Productivity per unit of water transpired (q) decreased withincreasing D. The product of q and the mean daytime value ofthe difference in vapour pressure between leaf and air was moreconservative than q, and ranged from 3.1 to 5.6 g kPa kg–1. Groundnut, Arachis hypogaea L., saturation deficit, growth, development, light interception, water use efficiency  相似文献   

12.
Shade-tolerant understory shrubs and subcanopy trees constitute most of the woody species in Neotropical moist forest, but studies demonstrating physiological differences among these species are few. Shade-tolerant species that coexist in the forest understory exhibit differences in leaf life span that have been associated with variation in physiological traits. We hypothesized that water relations of understory species with widely divergent leaf life spans differ in response to drought. Although severe drought is infrequent in Neotropical moist forest, we studied the water relations of shade-tolerant understory species with short or long leaf life spans during the severe 1991-1992 dry season on Barro Colorado Island, Panama. The predawn leaf water potential declined to -2.8 and -3.6 MPa during the dry season in Hybanthus prunifolius and Psychotria horizontalis, respectively, two species with short leaf life spans, but remained above -1.3 MPa in two species with long leaf life spans, Swartzia simplex and Ouratea lucens. The midday leaf water potential dropped as low as -3.4 and -4.5 MPa for H. prunifolius and P. horizontalis, respectively. The osmotic potential of H. prunifolius and P. horizontalis and another species with short leaf life span, Alms blackiana, decreased early in the dry season, a period during which all three had substantially negative predawn water potential. In contrast, the osmotic potential of S. Simplex, O. lucens, and Licania platypus, a third species with long leaf life span, declined late in the dry season, even though we observed little change in predawn water potential for S. simplex and O. lucens. We conclude that the variable and potentially severe dry season in Neotropical moist forest can be sufficiently intense to severely limit soil moisture availability for understory plants. H. prunifolius and P. horizontalis tolerated dehydration, whereas S. simplex and O. lucens postponed dehydration.  相似文献   

13.
Provisioning along pedestrian trails by tourists much increased the nutrient quality and patchiness of food (NqPF) for Tibetan macaques (Macaca thibetana) at Mt Emei in spring and summer. In the habitat at a temperate-subtropical transition zone, the macaque's NqPF could be ordered in a decreasing rank from spring-summer to autumn to winter. With the aid of a radio-tracking system, I collected ranging data on a multigroup community in three 70-day periods representing the different seasons in 1991–92. Rank-order correlation on the data show that with the decline of NqPF, the groups tended to increase days away from the trail, their effective range size (ERS), their exclusive area (EA) and the number of days spent in the EA, and reduced their group/community density and the ratio of the overlapped range to the seasonal range (ROR). In icy/snowy winter, the macaques searched for mature leaves slowly and carefully in the largest seasonal range with a considerable portion that was not used in other seasons. Of the responses, the ROR decreased with the reduction in group/community density; and the ERS was the function of both group size (+) and intergroup rank (–) when favorite food was highly clumped. All above responses were clearly bound to maximize foraging effectiveness and minimize energy expenditure, and their integration in term of changes in time and space leads to better understanding macaque ecological adaptability. Based on this study and previous work on behavioral and physiological factors, I suggest a unifying theory of intergroup interactions. In addition, as the rate of behavioral interactions was also related to the group density, Waser's (1976) gas model probably applies to behavioral, as well as spatial, data on intergroup interactions.  相似文献   

14.
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.  相似文献   

15.
Decomposition and faunal colonization of a carcass in the terrestrial environment has been well studied, but knowledge of decomposition in the marine environment is based almost entirely on anecdotal reports. Three pig carcasses were deployed in Saanich Inlet, BC, over 3 years utilizing Ocean Network Canada’s VENUS observatory. Each carcass was deployed in late summer/early fall at 99 m under a remotely controlled camera and observed several times a day. Dissolved oxygen, temperature, salinity, density and pressure were continuously measured. Carcass 1 was immediately colonized by Munida quadrispina, Pandalus platyceros and Metacarcinus magister, rapidly scavenged then dragged from view by Day 22. Artifacts specific to each of the crustaceans’ feeding patterns were observed. Carcass 2 was scavenged in a similar fashion. Exposed tissue became covered by Orchomenella obtusa (Family Lysianassidae) which removed all the internal tissues rapidly. Carcass 3 attracted only a few M. quadrispina, remaining intact, developing a thick filamentous sulphur bacterial mat, until Day 92, when it was skeletonized by crustacea. The major difference between the deployments was dissolved oxygen levels. The first two carcasses were placed when oxygen levels were tolerable, becoming more anoxic. This allowed larger crustacea to feed. However, Carcass 3 was deployed when the water was already extremely anoxic, which prevented larger crustacea from accessing the carcass. The smaller M. quadrispina were unable to break the skin alone. The larger crustacea returned when the Inlet was re-oxygenated in spring. Oxygen levels, therefore, drive the biota in this area, although most crustacea endured stressful levels of oxygen to access the carcasses for much of the time. These data will be valuable in forensic investigations involving submerged bodies, indicating types of water conditions to which the body has been exposed, identifying post-mortem artifacts and providing realistic expectations for recovery divers and families of the deceased.  相似文献   

16.
17.
Social networking has revolutionized the use of conventional web and has converted World Wide Web into the social web as users can generate their own content. This change has been possible due to social web platforms like forums, wikis, and blogs. Blogs are more commonly being used as a form of virtual communication to express an opinion about an event, product or experience and can reach a large audience. Users can influence others to buy a product, have certain political or social views, etc. Therefore, identifying the most influential bloggers has become very significant as this can help us in the fields of commerce, advertisement and product knowledge searching. Existing approaches consider some basic features, but lack to consider some other features like the importance of the blog on which the post has been created. This paper presents a new metric, MIIB (Metric for Identification of Influential Bloggers), based on various features of bloggers’ productivity and popularity. Productivity refers to bloggers’ blogging activity and popularity measures bloggers’ influence in the blogging community. The novel module of BlogRank depicts the importance of blog sites where bloggers create their posts. The MIIB has been evaluated against the standard model and existing metrics for finding the influential bloggers using dataset from the real-world blogosphere. The obtained results confirm that the MIIB is able to find the most influential bloggers in a more effective manner.  相似文献   

18.
Epidemiological studies suggest sex differences in attention deficit and hyperactivity disorder (ADHD) symptomatology. The potential benefits of caffeine have been reported in the management of ADHD, but its effects were not properly addressed with respect to sex differences. The present study examined the effects of caffeine (0.3 g/L) administered since childhood in the behavior and brain-derived neurotrophic factor (BDNF) and its related proteins in both sexes of a rat model of ADHD (spontaneously hypertensive rats—SHR). Hyperlocomotion, recognition, and spatial memory disturbances were observed in adolescent SHR rats from both sexes. However, females showed lack of habituation and worsened spatial memory. Although caffeine was effective against recognition memory impairment in both sexes, spatial memory was recovered only in female SHR rats. Besides, female SHR rats showed exacerbated hyperlocomotion after caffeine treatment. SHR rats from both sexes presented increases in the BDNF, truncated and phospho-TrkB receptors and also phospho-CREB levels in the hippocampus. Caffeine normalized BDNF in males and truncated TrkB receptor at both sexes. These findings provide insight into the potential of caffeine against fully cognitive impairment displayed by females in the ADHD model. Besides, our data revealed that caffeine intake since childhood attenuated behavioral alterations in the ADHD model associated with changes in BDNF and TrkB receptors in the hippocampus.  相似文献   

19.
Mašek  Jiří  Tumajer  Jan  Lange  Jelena  Kaczka  Ryszard  Fišer  Petr  Treml  Václav 《Ecosystems》2023,26(5):1144-1157
Ecosystems - Inter-annual climatically driven growth variability of above-ground biomass compartments (for example, tree stems and foliage) controls the intensity of carbon sequestration into...  相似文献   

20.
The objective of this work was to determine (1) the effect of rotational speed (N) and lifters on the oxygen transfer coefficient (k L) of a mineral solution and (2) the effect of solids concentration of a slurry soil-mineral solution on k L, at a fixed value N (0.25 s−1); in both cases the treatment was carried out in an aerated rotating drum reactor (RDR) operated at atmospheric pressure. First, the k L for the mineral solution was in the range 6.38 × 10−4–7.69 × 10−4 m s−1, which was of the same order of magnitude as those calculated for closed rotating drums supplied with air flow. In general, k L of RDR implemented with lifters was superior or equal to that of RDR without lifters. For RDR implemented with lifters, k L increased with N in the range 6.65 × 10−4–10.51 × 10−4 m s−1, whereas k L of RDR without lifters first increased with N up to N = 0.102 s−1, and decreased beyond this point. Second, regarding soil slurry experiments, an abrupt fall of k L (ca. 50%) at low values of the solid concentration (C v) and an asymptotic pattern at high C v were observed at N = 0.25 s−1. These results suggest that mass transfer phenomena were commanded by the slurry properties and a semi-empirical equation of the form Sh = f(Re, Sc) seems to corroborate this finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号