首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to unlearn a previously established association is an important component of behavioural flexibility and may vary according to species ecology. Previously, two closely related sympatric Darwin’s finches were found to differ in their learning abilities. Small tree finches (Camarhynchus parvulus) outperformed woodpecker finches (Cactospiza pallida) in reversal learning but performed worse in an operant task. We attributed this difference to the habit of woodpecker finches to engage in long bouts of energetic pecking during extractive foraging. Persistently repeating one action without reward could favour performance in operant tasks but also limit behavioural flexibility. Here, we tested whether perseverance is the reason for woodpecker finches’ depressed reversal learning performance. Two new reversal conditions allowed the disentanglement of two sources of error in reversal learning: perseverant choice of the previously rewarded stimulus and failure to respond to the previously non‐rewarded stimulus. For the within‐species comparison, we predicted that woodpecker finches should find it more difficult to learn to avoid the previously rewarded stimulus than learning to choose the previously non‐rewarded stimulus. For the species comparison, we predicted the woodpecker finches should make more errors of perseverance than small tree finches. As performance could also be influenced by reaction to novelty, we compared neophobic responses between species and related them to reversal learning proficiency. We found no significant difference in reversal learning in the predicted direction, but found a negative correlation between neophobia and reversal learning at the inter‐ and the intraspecific level, which points towards a general relationship between reaction to novelty and flexibility.  相似文献   

2.
Consistent individual differences in behaviour of animals, that is, personalities, are both widespread and widely studied, but very few studies also include cognitive traits in this context. Animal personality has recently been integrated into the pace‐of‐life‐syndrome hypothesis, relating individual behavioural traits to life history. Variation in cognitive traits could be explained well by this theoretical framework. A risk‐reward trade‐off might lead to different cognitive types: Active birds that learn fast, take risks and probably have a fast lifestyle and less active, slow learning birds that are risk averse but thereby perform better in reversal learning as they probably pay more attention to external cues. We investigated the performance of zebra finches (Taeniopygia guttata) in a cognitively challenging reversal learning task and linked this to two personality traits: activity and fearfulness. Male birds were better in reversal learning than females. While no personality‐related differences occurred in the initial learning of our task, more active and fearful birds relearned the cue–reward association faster. While birds of different sex might have revealed different risk‐taking strategies in the training, our findings do not reveal the expected direction of a risk‐reward trade‐off in the reversal learning. It seems likely that a more general and personality‐related cognitive ability might improve performance across different tasks. The linkage between personality and cognition documented here could hence suggest that cognitive traits are indeed part of an overall pace‐of‐life syndrome.  相似文献   

3.
Behavioural flexibility allows an animal to adapt its behaviour in response to changes in the environment. Research conducted in primates, rodents and domestic fowl suggests greater behavioural persistence and reduced behavioural flexibility in males. We investigated sex differences in behavioural flexibility in fish by comparing male and female guppies (Poecilia reticulata) in a reversal learning task. Fish were first trained on a colour discrimination, which was learned equally rapidly by males and females. However, once the reward contingency was reversed, females were better at inhibiting the previous response and reached criterion twice as fast as males. When reward reversing was repeated, males gradually reduced the number of errors, and the two sexes had a comparable performance after four reversals. We suggest that sex differences in behavioural flexibility in guppies can be explained in terms of the different roles that males and females play in reproduction.  相似文献   

4.
The capacity to flexibly adapt responding to unexpected changes in the environment is crucial for survival. Several neurotransmitters have been implicated in stimulus-outcome reversal learning. Yet, it remains an open question whether inter-individual differences in the neuroactive hormone testosterone may also be related to this type of behavioral flexibility. In this study we assessed the association between endogenous testosterone level and reversal learning in young healthy men. We used an observer reversal learning task, in which subjects viewed computer-based decisions between two stimuli, of which one was currently rewarded while the other one was punished. Contingencies reversed unpredictably every 5–9 trials. Subjects had to indicate the current outcome association before the actual outcome was revealed. In the trial following an unexpected reversal either the same stimulus from the reversal (experienced reversal), or its alternative, for which the reversal had not yet been shown (inferred reversal), could be chosen by the computer, and subjects had to adapt responding accordingly. We found that testosterone predicted better post-reversal performance. This correlation was strongest in the more difficult inferred reversal condition, particularly in impulsive individuals. Collectively, these data support the view that endogenous testosterone may enhance behavioral flexibility in men, particularly when working memory demand is high and subjects have to update several stimulus-outcome contingencies at the same time. It remains to be further elucidated whether this testosterone effect was achieved through an interaction with dopaminergic transmission or through direct interplay with androgen receptors in the brain regions implicated in reversal learning.  相似文献   

5.
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.  相似文献   

6.
Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche.  相似文献   

7.
We present the results of experiments on cottontop tamarins designed to explore the relationship between problem solving, inhibitory control and domain-specific experience. The colony was divided into two groups: tool-experienced (TE) and tool-inexperienced (TI). The TE group had previously participated in a series of tool-use experiments and revealed that, when selecting a tool, they used featurally relevant dimensions (e.g. shape, material, orientation) over featurally irrelevant dimensions (e.g. colour). The TI group, although experienced in other laboratory-based experiments, had never been tested on tool or other object manipulation problems. In Phase 1, involving three conditions, all subjects were tested on a series of means-end problems involving the use of a cloth to access a piece of food. Although the correct choice always involved picking the supporting cloth, we also built in an association between the correct cloth and its colour. Once the subjects reached criterion, we reversed the association between the cloth colour and the food reward in Phase 2. If the subjects solved the problems in Phase 1 by attending to cloth colour, then in Phase 2 they should have difficulty, especially given prior findings on tamarins demonstrating that reversal learning is difficult. If the subjects solved Phase 1 by attending to the functionality of the problem (i.e. the physical/causal relationship between the cloth and food), then reversing the colours in Phase 2 should have no effect on the subjects' performances. Finally, if the subjects attended to both colour and functionality, then reversing the colours should cause some decrement in performance, but less so than in the case where colour alone dominates. In Phase 2, although both groups showed a decrement in performance, indicating problems with reversal learning, TE subjects significantly outperformed TI subjects. Furthermore, the pattern of performance for TE subjects suggested that they had solved the initial problem by attending to a combination of colour and functionality or functionality alone, while TI subjects had attended to colour alone. We conclude that for tamarins with experience as tool users, colour represents a less salient feature, even when it is systematically associated with a food reward. For inexperienced tamarins, however, colour is salient and reversal learning is difficult. Together, these findings highlight the importance of exploring the relationship between inhibitory control and domain-specific problem solving. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

8.
The foraging behaviour of bumble bees is well documented for nectar and/or pollen gathering, but little is known about the learning processes underlying such behaviour. We report olfactory conditioning in worker bumble bees Bombus terrestris L. (Hymenoptera: Apidae) obtained under laboratory conditions on restrained individuals. The protocol was adapted from the proboscis extension conditioning previously described in the honey bee Apis mellifera L. Bumble bees were found to be able to learn a pure odorant when it was presented in paired association with a sugar reward, but not when odour and reward were presented in an explicitly unpaired procedure. This suggests an associative basis for this olfactory learning. Bumble bees showed similar conditioning abilities when stimulated with two different floral odours. An effect of the sugar reward concentration on the learning performances was found.  相似文献   

9.
To achieve optimal performance in equine sports as well as in leisure not only the physical abilities of the horse should be considered, but also the horse’s personality. Besides temperamental aspects, like emotionality, or the horse’s reactivity towards humans in handling situations, the learning ability of the horse is another relevant personality trait. To study whether differences in learning performance are consistent over time and whether individual learning performance differs between learning tests or is affected by emotionality, 39 young horses (Dutch Warmblood) were tested repeatedly in two learning tests. An aversive stimulus (AS) was used in one learning test (the avoidance learning test) and a reward was used in the other learning test (the reward learning test). During both learning tests behaviour as well as heart rate were measured. Each test was executed four times, twice when horses were 1 year of age, and twice when they were 2 years of age. Half of the horses received additional physical training from 6 months onwards. In both tests horses could be classified as either performers, i.e. completing the daily session, or as non-performers, i.e. returning to the home environment without having completed the daily session. There were some indications that emotionality might have caused non-performing behaviour, but these indications are not convincing enough to exclude other causes. Furthermore, there seem to be no simple relationships between measures of heart rate, behavioural responses putatively related to emotionality and learning performance. Horses revealed consistent individual learning performances within years in both tests, and in the avoidance learning test also between years. There was no significant correlation between learning performances in the avoidance learning test and the learning performances in the reward learning test. It is concluded that individual learning abilities are consistent over a short time interval for an avoidance learning test and a reward learning test and over a longer time for the avoidance learning test. Furthermore, results indicate that some horses perform better when they have to learn to avoid an aversive stimulus while others perform better when they are rewarded after a correct response. It is suggested that these differences may be relevant to design optimal individual training programmes and methods.  相似文献   

10.
Behavioral flexibility is a complex cognitive function that is necessary for survival in changeable environments. Patients with schizophrenia or Parkinson's disease often suffer from cognitive rigidity, reducing their capacity to function in society. Patients and rodent models with focal lesions in the prefrontal cortex (PFC) show similar rigidity, owing to the loss of PFC regulation of subcortical reward circuits involved in behavioral flexibility. The vesicular glutamate transporter (VGluT1) is preferentially expressed at modulatory synapses, including PFC neurons that project to components of the reward circuit (such as the nucleus accumbens, NAc). VGluT1+/? mice display behavioral phenotypes matching many symptoms of schizophrenia, and VGluT1 expression is reduced in the PFC of patients with schizophrenia and Parkinson's disease. Thus, it appears likely that VGluT1‐expressing synapses from PFC play a key role in behavioral flexibility. To examine this hypothesis, we studied behavioral flexibility in VGluT1+/? mice by testing reversal learning in a visual discrimination task. Here, we show that VGluT1+/? mice acquired the initial visual discrimination at the same rate as controls. However, they failed to suppress responses to the previously rewarded stimulus following reversal of reward contingencies. Thus, our genetic disruption of modulatory glutamatergic signaling, including that arising from PFC, appears to have impaired the first stage of reversal learning (extinguishing responses to previously rewarded stimuli). Our data show that this deficit stems from a preservative phenotype. These findings suggest that glutamatergic regulation from the cortex is important for behavioral flexibility and the disruption of this pathway may be relevant in diseases such as schizophrenia.  相似文献   

11.
Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment) and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed). Computational strategies changed during development: whereas adolescents’ behaviour was better explained by a basic reinforcement learning algorithm, adults’ behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback) and a value contextualisation module (enabling symmetrical reward and punishment learning). Unlike adults, adolescent performance did not benefit from counterfactual (complete) feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence.  相似文献   

12.
The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.  相似文献   

13.
Rodents and primates deprived of early social contact exhibit deficits in learning and behavioural flexibility. They often also exhibit apparent signs of elevated anxiety, although the relationship between these effects has not been studied. To investigate whether dairy calves are similarly affected, we first compared calves housed in standard individual pens (n = 7) to those housed in a dynamic group with access to their mothers (n = 8). All calves learned to approach the correct stimulus in a visual discrimination task. Only one individually housed calf was able to re-learn the task when the stimuli were reversed, compared to all but one calf from the group. A second experiment investigated whether this effect might be explained by anxiety in individually housed animals interfering with their learning, and tested varying degrees of social contact in addition to the complex group: pair housing beginning early (approximately 6 days old) and late (6 weeks old). Again, fewer individually reared calves learned the reversal task (2 of 10 or 20%) compared to early paired and grouped calves (16 of 21 or 76% of calves). Late paired calves had intermediate success. Individually housed calves were slower to touch novel objects, but the magnitude of the fear response did not correlate with reversal performance. We conclude that individually housed calves have learning deficits, but these deficits were not likely associated with increased anxiety.  相似文献   

14.
Reproductive experiences in females comprise substantial hormonal and experiential changes and can exert long lasting changes in cognitive function, stress physiology, and brain plasticity. The goal of this research was to determine whether prior reproductive experience could alter a prefrontal–cortical dependent form of learning (strategy set shifting) in an operant box. In this study, female Sprague–Dawley rats were mated and mothered once or twice to produce either primiparous or biparous dams, respectively. Age-matched nulliparous controls (reproductively-naïve females with no exposure to pup cues) were also used. Maternal behaviors were also assessed to determine whether these factors would predict cognitive flexibility. For strategy set shifting, rats were trained in a visual-cue discrimination task on the first day and on the following day, were required to switch to a response strategy to obtain a reward. We also investigated a simpler form of behavioral flexibility (reversal learning) in which rats were trained to press a lever on one side of the box the first day, and on the following day, were required to press the opposite lever to obtain a reward. Estrous phase was determined daily after testing. Neither parity nor estrous phase altered total errors or trials to reach criterion in either the set-shifting or reversal-learning tasks, suggesting that PFC-dependent cognitive performance remains largely stable after 1 or 2 reproductive experiences. However, parity and estrous phase interacted to alter the frequency of particular error types, with biparous rats in estrus committing more perseverative but fewer regressive errors during the set-shifting task. This suggests that parity and estrous phase interfere with the ability to disengage from a previously used, but no longer relevant strategy. These data also suggest that parity alters the behavioral sensitivity to ovarian hormones without changing overall performance.  相似文献   

15.
In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80–90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2−/−) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2−/− mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.  相似文献   

16.
Males of the parasitoid wasp Nasonia vitripennis showed no innate preference for blue versus yellow or for green versus brown. They learned to associate color with mates, but their ability to do so depended on the color used and the strength of the reward. Specifically, males learned to associate brown or green with a reward of many virgin females. With fewer females, fewer training periods, or mated females as the reward, males still learned a preference for green but not for brown. Males did not learn to associate color with rewards of honey or water. Previous studies of color preference and associative learning in parasitoid wasps have focused almost entirely on females. This is the first demonstration of associative learning in response to visual cues by male parasitoid wasps.  相似文献   

17.
The dopaminergic neurotransmitter system is critically involved in promoting plasticity in auditory cortex. We combined functional magnetic resonance imaging (fMRI) and a pharmacological manipulation to investigate dopaminergic modulation of neural activity in auditory cortex during instrumental learning. Volunteers either received 100 mg L-dopa (Madopar) or placebo in an appetitive, differential instrumental conditioning paradigm, which involved learning that a specific category of frequency modulated tones predicts a monetary reward when fast responses were made in a subsequent reaction time task. The other category of frequency modulated tones was not related to a reward. Our behavioral data provides evidence that dopaminergic stimulation differentially impacts on the speed of instrumental responding in rewarded and unrewarded trials. L-dopa increased neural BOLD activity in left auditory cortex to tones in rewarded and unrewarded trials. This increase was related to plasma L-dopa levels and learning rate. Our data thus provides evidence for dopaminergic modulation of neural activity in auditory cortex, which occurs for both auditory stimuli related to a later reward and those not related to a reward.  相似文献   

18.
The ability to respond flexibly to environmental challenges, for instance by learning or by responding appropriately to novel stimuli, may be crucial for survival and reproductive success. Experiences made during early ontogeny can shape the degree of behavioural flexibility maintained by individuals during later life. In natural habitats, animals are exposed to a multitude of social and non‐social ecological factors during early ontogeny, but their relative influences on future learning ability and behavioural flexibility are only poorly understood. In the cooperatively breeding cichlid Neolamprologus pulcher, we investigated whether early social and predator experiences shape the learning performance, flexibility, and response to novelty of adults. Fish were reared either with or without parents and helpers and with or without perceived predation risk in a full‐factorial experiment. We investigated the influence of these treatments on learning performance and flexibility in a spatial acquisition and reversal learning task. To test for response to novelty, we performed a neophobia test. We found that fish reared with predator experience, but without the presence of older group members outperformed fish with other rearing backgrounds in reversal learning and that individuals, which had been reared in a socially more complex environment together with older group members responded less neophobic toward a novel object than individuals reared among siblings only. Comparative evidence from fish and rats suggests that these developmental effects may be driven by the cues of safety perceived in the presence of guarding parents.  相似文献   

19.
In social environments, decisions not only determine rewards for oneself but also for others. However, individual differences in pro-social behaviors have been typically studied through self-report. We developed a decision-making paradigm in which participants chose from card decks with differing rewards for themselves and charity; some decks gave similar rewards to both, while others gave higher rewards for one or the other. We used a reinforcement-learning model that estimated each participant''s relative weighting of self versus charity reward. As shown both in choices and model parameters, individuals who showed relatively better learning of rewards for charity – compared to themselves – were more likely to engage in pro-social behavior outside of a laboratory setting indicated by self-report. Overall rates of reward learning, however, did not predict individual differences in pro-social tendencies. These results support the idea that biases toward learning about social rewards are associated with one''s altruistic tendencies.  相似文献   

20.
Weaning in suckler calves influences performance in a learning task. The aim of the present study was to investigate whether the improved performance after weaning, including relocation, is due to differences in motivation for the reward or in learning abilities. Forty Aubrac calves were used; half of them were weaned from their dams at around eight months, the other half were weaned one month later. After weaning, calves were housed in groups of four in a new setting. From the day after weaning of the last group of calves, the animals were subjected to two tests: (1) an arena test, (2) a T-maze test where one arm led to either a social or a food reward. The T-maze test consisted of three sessions: in Session 1, trials were conducted until the animal acquired the task (i.e. did not take the unrewarded arm on three consecutive trials); in Session 2, the motivation for the reward was assessed via the walking time of the animal to reach the reward; in Session 3, the place of reward was reversed and the animals were trained until they acquired the new task.

Calves weaned for one day explored more (P < 0.05) and had lower heart rates during the arena test (P < 0.05) compared to the ones weaned for one month. During the T-maze test, calves weaned for one month versus one day did not differ in their capacities to learn the initial route (Session 1) or in their motivation for either the social or food reward (Session 2). Calves weaned for one day learned significantly faster (P < 0.05) the reversed route (Session 3) than calves weaned for one month. Hence, the better performances at reversal in the T-maze by calves that have just been weaned cannot be accounted for by a higher motivation for the reward. A better cognitive control of their behaviour due to a lower stress state is suggested by our results.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号