首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signalling through post-translational modification (PTM) of proteins is a process central to cell homeostasis, development and responses to external stimuli. The best characterised PTM is protein phosphorylation which is reversibly catalysed at specific residues through the action of protein kinases (addition) and phosphatases (removal). Here, we report characterisation of an orphan protein phosphatase that possesses a domain architecture previously only described in Plantae. Through gene disruption and the production of active site mutants, the enzymatically active Protein Phosphatase containing Kelch-Like domains (PPKL, PBANKA_132950) is shown to play an essential role in the development of an infectious ookinete. PPKL is produced in schizonts and female gametocytes, is maternally inherited where its absence leads to the development of a malformed, immotile, non-infectious ookinete with an extended apical protrusion. The distribution of PPKL includes focussed localization at the ookinete apical tip implying a link between its activity and the correct deployment of the apical complex and microtubule cytoskeleton. Unlike wild type parasites, ppkl(-) ookinetes do not have a pronounced apical distribution of their micronemes yet secretion of microneme cargo is unaffected in the mutant implying that release of microneme cargo is either highly efficient at the malformed apical prominence or secretion may also occur from other points of the parasite, possibly the pellicular pores.  相似文献   

2.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

3.
The P28 family of proteins are 28 kDa proteins expressed on the surface of sexual stages—zygote, ookinete and young oocyst stages—of Plasmodium species when the parasite resides inside the mosquito midgut. Together with P25 proteins, P28 proteins protect the parasite from the harsh proteolytic environment prevailing inside the mosquito midgut. Vaccines against these proteins induce antibodies in vertebrate hosts that are capable of inhibiting parasite development in the mosquito midgut, thus preventing transmission of the parasite from the mosquito to another human host. These transmission-blocking vaccines are helpful in reducing the burden caused by malaria, which affects 300–600 million, and kills 1–3 million, people annually. The purpose of this study was to structurally characterise six members of the P28 family of ookinete surface proteins with the help of homology modelling, to compare these proteins in terms of transmission blocking and host parasite interactions, and to analyse phylogenetic relationships within the P28 family and with the P25 family. Our results indicate that all the members of the P28 family studied have four EGF domains arranged in triangular fashion with a very big C loop present in EGF domain IV, which could serve as a diagnostic feature of the P28 family as this loop is absent in the P25 family of ookinete surface proteins. The models of the P28 family of ookinete surface proteins obtained may help in understanding the biology of the parasite inside the mosquito midgut, and in designing transmission-blocking vaccines against malaria in the absence of experimentally determined structures of these important surface proteins. An erratum to this article can be found at  相似文献   

4.
5.
6.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called “regenerative” cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

7.
Once ingested by mosquitoes, malaria parasites undergo complex cellular changes. These include zygote formation, transformation of zygote to ookinete, and differentiation from ookinete to oocyst. Within the oocyst, the parasite multiplies into numerous sporozoites. Modulators of intracellular calcium homeostasis, MAPTAM, and TMB-8 blocked ookinete development as did the calmodulin (CaM) antagonists W-7 and calmidazolium. Ca(2+)/CaM-dependent protein kinase inhibitor KN-93 also blocked zygote elongation, while its ineffective analog KN-92 did not have such effect. In vitro both zygote and ookinete extracts efficiently phosphorylated autocamtide-2, a classic CaM kinase substrate, which could be blocked by calmodulin antagonists W-7 and calmidazolium and CaM kinase inhibitor KN-93. These results demonstrated the presence of calmodulin-dependent CaM kinase activity in the parasite. KN-93-treated parasites, however, expressed the ookinete-specific enzyme chitinase and the ookinete surface antigen Pgs28 normally, suggesting that the morphologically untransformed parasites are biochemically mature ookinetes. In mosquitoes, KN-93-treated parasites did not develop as oocysts, while KN-92-treated parasites produced similar numbers of oocysts as controls. These data suggested that in Plasmodium gallinaceum morphological development of zygote to ookinete, but not its biochemical maturation, relies on Ca(2+)/CaM-dependent protein kinase activity and demonstrated that the morphological differentiation is essential for the further development of the parasite in infected blood-fed mosquitoes.  相似文献   

8.
The need for new malaria control strategies has led to increased efforts to understand more clearly the mosquito stages of Plasmodium. The absolute requirement of gamete maturation and fertilization, transformation of sedentary zygote to motile ookinete, ookinete interaction and invasion of gut epithelium, and the survival of the mosquito against immune attack suggest that numerous unidentified targets exist, which could be modified to achieve transmission-blocking of malaria. In the search for new transmission-blocking targets in the mosquito gut, Mohammed Shahabuddin, Stéphane Cociancich and Helge Zieler here summarize recent studies to identify the cellular and biochemical factors that affect the malaria parasite's development; in particular, factors influencing the early development of Plasmodium, receptor-mediated interactions between the parasite and the mosquito midgut, and the gut-associated immune responses directed against Plasmodium.  相似文献   

9.
Sexual development in malaria parasites involves multiple signal transduction pathways mediated by reversible protein phosphorylation. Here, we functionally characterised a protein phosphatase, Ser/Thr protein phosphatase 5 (PbPP5), during sexual development of the rodent malaria parasite Plasmodium berghei. The recombinant protein phosphatase domain displayed obvious protein phosphatase activity and was sensitive to PP1/PP2A inhibitors including cantharidic acid (IC50 = 122.2 nM), cantharidin (IC50 = 74.3 nM), endothall (IC50 = 365.5 nM) and okadaic acid (IC50 = 1.3 nM). PbPP5 was expressed in both blood stages and ookinetes with more prominent expression during sexual development. PbPP5 was localised in the cytoplasm of the parasite and highly concentrated beneath the parasite plasma membrane in free merozoites and ookinetes. Targeted deletion of the pbpp5 gene had no influence on asexual blood-stage parasite multiplication or the survival curve of the infected hosts. However, male gamete formation and fertility were severely affected, resulting in almost complete blockade of ookinete conversion and oocyst development in the Δpbpp5 lines. This sexual development defect was rescued by crossing Δpbpp5 with the female defective Δpbs47 parasite line, but not with the male defective Δpbs48/45 line, thus confirming the essential function of the pbpp5 gene in male gamete fertility. Furthermore, the aforementioned PP1/PP2A inhibitors all had inhibitory effects on exflagellation of male gametocytes and ookinete conversion. In particular, endothall, a selective inhibitor of PP2A, completely blocked exflagellation and ookinete conversion at ~548.3 nM. This study elucidated an essential function of PbPP5 during male gamete development and fertility.  相似文献   

10.
The molecular mechanisms regulating the sexual development of malaria parasites from gametocytes to oocysts in their mosquito vector are still largely unexplored. In other eukaryotes, NIMA-related kinases (Neks) regulate cell cycle progression and have been implicated in the regulation of meiosis. Here, we demonstrate that Nek-4, a new Plasmodium member of the Nek family, is essential for completion of the sexual cycle of the parasite. Recombinant Plasmodium falciparum Nek-4 possesses protein kinase activity and displays substrate preferences similar to those of other Neks. Nek-4 is highly expressed in gametocytes, yet disruption of the nek-4 gene in the rodent malaria parasite P. berghei has no effect on gamete formation and subsequent fertilization. However, further differentiation of zygotes into ookinetes is abolished. Measurements of nuclear DNA content indicate that zygotes lacking Nek-4 fail to undergo the genome replication to the tetraploid level that precedes meiosis. Cell cycle progression in the zygote is identified as a likely precondition for its morphological transition to the ookinete and for the successful establishment of a malaria infection in the mosquito.  相似文献   

11.
12.
Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.  相似文献   

13.
14.
15.
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.  相似文献   

16.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

17.
To invade its definitive host, the mosquito, the malaria parasite must cross the midgut peritrophic matrix that is composed of chitin cross-linked by chitin-binding proteins and then develop into an oocyst on the midgut basal lamina. Previous evidence indicates that Plasmodium ookinete-secreted chitinase is important in midgut invasion. The mechanistic role of other ookinete-secreted enzymes in midgut invasion has not been previously examined. De novo mass spectrometry sequencing of a protein obtained by benzamidine affinity column of Plasmodium gallinaceum ookinete axenic culture supernatant demonstrated the presence of an ookinete-secreted plasmepsin, an aspartic protease previously only known to be present in the digestive vacuole of asexual stage malaria parasites. This plasmepsin, the ortholog of Plasmodium falciparum plasmepsin 4, was designated PgPM4. PgPM4 and PgCHT2 (the P. gallinaceum ortholog of P. falciparum chitinase PfCHT1) are both localized on the ookinete apical surface, and both are present in micronemes. Aspartic protease inhibitors (peptidomimetic and natural product), calpain inhibitors, and anti-PgPM4 monoclonal antibodies significantly reduced parasite infectivity for mosquitoes. These results suggest that plasmepsin 4, previously known only to function in the digestive vacuole of asexual blood stage Plasmodium, plays a role in how the ookinete interacts with the mosquito midgut interactions as it becomes an oocyst. These data are the first to delineate a role for an aspartic protease in mediating Plasmodium invasion of the mosquito and demonstrate the potential for plasmepsin 4 as a malaria transmission-blocking vaccine target.  相似文献   

18.
The transformation of malaria ookinetes into oocysts occurs in the mosquito midgut and is a major bottleneck for parasite transmission. The secreted ookinete surface protein, circumsporozoite- and thrombospondin-related adhesive protein (TRAP)-related protein (CTRP), is essential for this transition and hence constitutes a potential target for malaria transmission blockade. CTRP is a modular multidomain protein containing six tandem von Willebrand factor A-like (A) domains and seven tandem thrombospondin type I repeat-like (TS) domains. Here we present, to our knowledge, the first structure-function analysis of CTRP using genetically modified Plasmodium berghei parasites expressing mutant versions of the ctrp gene. Our data show that the A domains of CTRP are critical for ookinete gliding motility and oocyst formation whilst, unexpectedly, its TS domains are fully redundant. These results may have important implications for the design of CTRP-based transmission blocking strategies.  相似文献   

19.
When taking a blood meal on a person infected with malaria, female Anopheles gambiae mosquitoes, the major vector of human malaria, acquire nutrients that will activate egg development (oogenesis) in their ovaries. Simultaneously, they infect themselves with the malaria parasite. On traversing the mosquito midgut epithelium, invading Plasmodium ookinetes are met with a potent innate immune response predominantly controlled by mosquito blood cells. Whether the concomitant processes of mosquito reproduction and immunity affect each other remains controversial. Here, we show that proteins that deliver nutrients to maturing mosquito oocytes interfere with the antiparasitic response. Lipophorin (Lp) and vitellogenin (Vg), two nutrient transport proteins, reduce the parasite-killing efficiency of the antiparasitic factor TEP1. In the absence of either nutrient transport protein, TEP1 binding to the ookinete surface becomes more efficient. We also show that Lp is required for the normal expression of Vg, and for later Plasmodium development at the oocyst stage. Furthermore, our results uncover an inhibitory role of the Cactus/REL1/REL2 signaling cassette in the expression of Vg, but not of Lp. We reveal molecular links that connect reproduction and immunity at several levels and provide a molecular basis for a long-suspected trade-off between these two processes.  相似文献   

20.
Malaria parasites undergo two rounding-up transformations in their life cycle: the ookinete-to-oocyst transformation in the mosquito midgut, and the sporozoite-to-EEF (exo-erythrocytic form) differentiation in the host hepatocyte. Both events are characterized by the loss of polarity, implying that cytoskeletal reorganization is involved. In other eukaryotes, regulation of the actin skeleton is fundamental to subcellular remodeling. Although filamentous actin is well known to be involved in the motility of apicomplexan parasites, its participation in their morphological regulation is still largely unexplored. Here we describe the fundamental role of Actin depolymerization factor 2 (ADF2), a vector-stage-specific ADF isoform, in morphological changes accompanying the parasite life cycle. Among protozoan parasites, Plasmodium is unique in having two actin and two ADF genes. Disruption of the ADF2 gene in the rodent malaria parasite P. berghei had no effect on ookinete development or its subsequent invasion of the midgut. However, both the ookinete-to-oocyst and sporozoite-to-EEF transformations showed significant defects. These results indicated that Plasmodium ADF2 plays a pivotal role in transformation in the malaria parasite life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号