首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aedes aegypti mosquitoes vector several arboviruses of global health significance, including dengue viruses and chikungunya virus. RNA interference (RNAi) plays an important role in antiviral immunity, gene regulation and protection from transposable elements. Double-stranded RNA binding proteins (dsRBPs) are important for efficient RNAi; in Drosophila functional specialization of the miRNA, endo-siRNA and exo-siRNA pathway is aided by the dsRBPs Loquacious (Loqs-PB, Loqs-PD) and R2D2, respectively. However, this functional specialization has not been investigated in other dipterans. We were unable to detect Loqs-PD in Ae. aegypti; analysis of other dipteran genomes demonstrated that this isoform is not conserved outside of Drosophila. Overexpression experiments and small RNA sequencing following depletion of each dsRBP revealed that R2D2 and Loqs-PA cooperate non-redundantly in siRNA production, and that these proteins exhibit an inhibitory effect on miRNA levels. Conversely, Loqs-PB alone interacted with mosquito dicer-1 and was essential for full miRNA production. Mosquito Loqs interacted with both argonaute 1 and 2 in a manner independent of its interactions with dicer. We conclude that the functional specialization of Loqs-PD in Drosophila is a recently derived trait, and that in other dipterans, including the medically important mosquitoes, Loqs-PA participates in both the miRNA and endo-siRNA based pathways.  相似文献   

2.
Gene silencing by RNA interference (RNAi) can be a useful reverse genetics tool in eukaryotes. However, some species appear refractory to RNAi. To study the role of the differential expression of RNAi proteins in RNAi, we isolated partial dicer-2, argonaute-2 translin, vasa intronic gene (VIG) and tudor staphylococcus/micrococcal nuclease (TSN) genes from the tobacco hornworm, Manduca sexta, a well-studied insect model which we have found to be variably sensitive to RNAi. We found that the RNAi gene, translin, was expressed at minimal levels in M. sexta tissue and that there is a specific, dose-dependent upregulation of dicer-2 and argonaute-2 expression in response to injection with dsRNA, but no upregulation of the other genes tested. Upregulation of gene expression was rapid and transient. In order to prolong the upregulation we introduced multiple doses of dsRNA, resulting in multiple peaks of dicer-2 gene expression. Our results have implications for the design of RNAi experiments and may help to explain differences in the sensitivity of eukaryotic organisms to RNAi.  相似文献   

3.
The Drosophila RNase III enzyme Dicer-2 processes double-stranded RNA (dsRNA) precursors into small interfering RNAs (siRNAs). It also interacts with the siRNA product and R2D2 protein to facilitate the assembly of an RNA-induced silencing complex (RISC) that mediates RNA interference. Here, we characterized six independent missense mutations in the dicer-2 gene. Four mutations (P8S, L188F, R269W, and P365L) in the DExH helicase domain reduced dsRNA processing activity. Two mutations were located within an RNase III domain. P1496L caused a loss of dsRNA processing activity comparable to a null dicer-2 mutation. A1453T strongly reduced both dsRNA processing and RISC activity, and decreased the levels of Dicer-2 and R2D2 proteins, suggesting that this mutation destabilizes Dicer-2. We also found that the carboxyl-terminal region of R2D2 is essential for Dicer-2 binding. These results provide further insight into the structure-function relationship of Dicer, which plays a critical role in the siRNA pathway.  相似文献   

4.
5.
Lee YS  Nakahara K  Pham JW  Kim K  He Z  Sontheimer EJ  Carthew RW 《Cell》2004,117(1):69-81
The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi). We have characterized mutations in the Drosophila dicer-1 and dicer-2 genes. Mutation in dicer-1 blocks processing of miRNA precursors, whereas dicer-2 mutants are defective for processing siRNA precursors. It has been recently found that Drosophila Dicer-1 and Dicer-2 are also components of siRNA-dependent RISC (siRISC). We find that Dicer-1 and Dicer-2 are required for siRNA-directed mRNA cleavage, though the RNase III activity of Dicer-2 is not required. Dicer-1 and Dicer-2 facilitate distinct steps in the assembly of siRISC. However, Dicer-1 but not Dicer-2 is essential for miRISC-directed translation repression. Thus, siRISCs and miRISCs are different with respect to Dicers in Drosophila.  相似文献   

6.
Experiments of dsRNA-mediated gene silencing in lepidopteran insects in vivo are characterized by high variability although lepidopteran cell cultures have shown an efficient response to RNAi in transfection experiments. In order to identify the core RNAi factors that regulate the RNAi response of Lepidoptera, we employed the silkmoth ovary-derived Bm5 cells as a test system since this cell line is known to respond potently in silencing after dsRNA transfection. Two parallel approaches were used; involving knock-down of the core RNAi genes or over-expression of the main siRNA pathway factors, in order to study possible inhibition or stimulation of the RNAi silencing response, respectively. Components from all three main small RNA pathways (BmAgo-1 for miRNA, BmAgo-2/BmDcr-2 for siRNA, and BmAgo-3 for piRNA) were found to be involved in the RNAi response that is triggered by dsRNA. Since BmAgo-3, a factor in the piRNA pathway that functions independent of Dicer in Drosophila, was identified as a limiting factor in the RNAi response, sense and antisense ssRNA was also tested to induce gene silencing but proved to be ineffective, suggesting a dsRNA-dependent role for BmAgo-3 in Bombyx mori. After efficient over-expression of the main siRNA factors, immunofluorescence staining revealed a predominant cytoplasmic localization in Bm5 cells. This is the first study in Lepidoptera to provide evidence for possible overlapping of all three known small RNA pathways in the regulation of the dsRNA-mediated silencing response using transfected B. mori-derived Bm5 cells as experimental system.  相似文献   

7.
8.
RNA interference (RNAi) is a useful reverse genetics tool for investigation of gene function as well as for practical applications in many fields including medicine and agriculture. RNAi works very well in coleopteran insects including the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We used a cell line (Lepd-SL1) developed from CPB to identify genes that play key roles in RNAi. We screened 50 genes with potential functions in RNAi by exposing Lepd-SL1 cells to dsRNA targeting one of the potential RNAi pathway genes followed by incubation with dsRNA targeting inhibitor of apoptosis (IAP, silencing of this gene induces apoptosis). Out of 50 genes tested, silencing of 29 genes showed an effect on RNAi. Silencing of five genes (Argonaute-1, Argonaute-2a, Argonaute-2b, Aubergine and V-ATPase 16 kDa subunit 1, Vha16) blocked RNAi suggesting that these genes are essential for functioning of RNAi in Lepd-SL1 cells. Interestingly, Argonaute-1 and Aubergine which are known to function in miRNA and piRNA pathways respectively are also critical to siRNA pathway. Using 32P labeled dsRNA, we showed that these miRNA and piRNA Argonautes but not Argonaute-2 are required for processing of dsRNA to siRNA. Transfection of pIZT/V5 constructs containing these five genes into Sf9 cells (the cells where RNAi does not work well) showed that expression of all genes tested, except the Argonaute-2a, improved RNAi in these cells. Results from Vha16 gene silencing and bafilomycin-A1 treatment suggest that endosomal escape plays an important role in dsRNA-mediated RNAi in Lepd-SL1 cells.  相似文献   

9.
In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded character—as is found in small interfering RNAs (siRNAs)—directs duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide.  相似文献   

10.
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs.  相似文献   

11.
Small RNAs are potent regulators of gene expression. They also act in defense pathways against invading nucleic acids such as transposable elements or viruses. To counteract these defenses, viruses have evolved viral suppressors of RNA silencing (VSRs). Plant viruses encoded VSRs interfere with siRNAs or miRNAs by targeting common mediators of these two pathways. In contrast, VSRs identified in insect viruses to date only interfere with the siRNA pathway whose effector Argonaute protein is Argonaute-2 (Ago-2). Although a majority of Drosophila miRNAs exerts their silencing activity through their loading into the Argonaute-1 protein, recent studies highlighted that a fraction of miRNAs can be loaded into Ago-2, thus acting as siRNAs. In light of these recent findings, we re-examined the role of insect VSRs on Ago-2-mediated miRNA silencing in Drosophila melanogaster. Using specific reporter systems in cultured Schneider-2 cells and transgenic flies, we showed here that the Cricket Paralysis virus VSR CrPV1-A but not the Flock House virus B2 VSR abolishes silencing by miRNAs loaded into the Ago-2 protein. Thus, our results provide the first evidence that insect VSR have the potential to directly interfere with the miRNA silencing pathway.  相似文献   

12.
Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression.  相似文献   

13.
The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.  相似文献   

14.
Ohta H  Fujiwara M  Ohshima Y  Ishihara T 《Genetics》2008,180(2):785-796
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) mediate gene silencing through evolutionarily conserved pathways. In Caenorhabditis elegans, the siRNA/miRNA pathways are also known to affect transgene expression. To identify genes that regulate the efficiencies of the siRNA/miRNA pathways, we used the expression level of a transgene as an indicator of gene silencing and isolated a transgene-silencing mutant, adbp-1 (ADR-2 binding protein). The adbp-1 mutation caused transgene silencing in hypodermal and intestinal cells in a cell-autonomous manner, depending on the RNA interference (RNAi) machinery. The adbp-1 gene encodes a protein with no conserved domains that is localized in the nucleus. Yeast two-hybrid screening and co-immunoprecipitation analysis demonstrated that ADBP-1 physically interacts with ADR-2, an RNA-editing enzyme from the ADAR (adenosine deaminase acting on dsRNA) family. In the adbp-1 mutant, as previously shown in adr-2 mutants, A-to-I RNA editing was not detected, suggesting that ADBP-1 is required for the RNA-editing activity of ADR-2. We found that ADBP-1 facilitates the nuclear localization of ADR-2. ADBP-1 may regulate ADR-2 activity and the consequent RNA editing and thereby antagonize RNAi-mediated transgene silencing in C. elegans.  相似文献   

15.
16.
17.
18.
The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3’ overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.  相似文献   

19.
20.
Han YH  Luo YJ  Wu Q  Jovel J  Wang XH  Aliyari R  Han C  Li WX  Ding SW 《Journal of virology》2011,85(24):13153-13163
Replication of viral RNA genomes in fruit flies and mosquitoes induces the production of virus-derived small interfering RNAs (siRNAs) to specifically reduce virus accumulation by RNA interference (RNAi). However, it is unknown whether the RNA-based antiviral immunity (RVI) is sufficiently potent to terminate infection in adult insects as occurs in cell culture. We show here that, in contrast to robust infection by Flock house virus (FHV), infection with an FHV mutant (FHVΔB2) unable to express its RNAi suppressor protein B2 was rapidly terminated in adult flies. FHVΔB2 replicated to high levels and induced high mortality rates in dicer-2 and argonaute-2 mutant flies that are RNAi defective, demonstrating that successful infection of adult Drosophila requires a virus-encoded activity to suppress RVI. Drosophila RVI may depend on the RNAi activity of viral siRNAs since efficient FHVΔB2 infection occurred in argonaute-2 and r2d2 mutant flies despite massive production of viral siRNAs. However, RVI appears to be insensitive to the relative abundance of viral siRNAs since FHVΔB2 infection was terminated in flies carrying a partial loss-of-function mutation in loquacious required for viral siRNA biogenesis. Deep sequencing revealed a low-abundance population of Dicer-2-dependent viral siRNAs accompanying FHVΔB2 infection arrest in RVI-competent flies that included an approximately equal ratio of positive and negative strands. Surprisingly, viral small RNAs became strongly biased for positive strands at later stages of infection in RVI-compromised flies due to genetic or viral suppression of RNAi. We propose that degradation of the asymmetrically produced viral positive-strand RNAs associated with abundant virus accumulation contributes to the positive-strand bias of viral small RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号