首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.Download video file.(284M, mp4)  相似文献   

2.
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX1. Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB2,3. This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning ~2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete γH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy2. The loss of γH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary4-8. The disappearence of γH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C5,6. Further, removal of γH2AX by redistribution involving histone exchange with H2A.Z has been implicated7,8. Importantly, the quantitative analysis of γH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of γH2AX foci in γ-irradiated adherent human keratinocytes9.Download video file.(225M, mp4)  相似文献   

3.

Purpose

To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM) and to estimate foci after FFDM and digital breast-tomosynthesis (DBT) using a biological phantom model.

Materials and Methods

The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified.

Results

Median in-vivo foci level/cell was 0.086 (range 0.067–0.116) before and 0.094 (0.076–0.126) after FFDM (p = 0.0004). In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086–0.140) at skin level and 0.035 (range 0.030–0.050) at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040–0.081) at skin level and 0.015 (range 0.006–0.020) at glandular level.

Conclusion

In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.  相似文献   

4.
H2AX phosphorylation is a novel marker of DNA double-stranded breaks. In the present study, we assessed the γ-H2AX expression, its association with other clinicopathologic characteristics, and the prognosis in a cohort of 97 patients with breast cancer. Ninety-seven specimens of tumor tissue and 77 adjacent normal tissues from patients with breast cancer were examined. All patients underwent modified radical mastectomy or local tumor resection without lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Patients were followed after surgery for a mean duration of 70.1 ± 18.7 months (range, 6-93 months). The γ-H2AX staining was positive in 27 (27.8%) patients. The positive rates of H2AX were 26.0% and 2.6% in tumor tissue and adjacent normal tissues, respectively. γ-H2AX positive status was negatively associated with TNM staging, with 24 positive cases (32.4%) in TNM staging I-II, while no positive cases in TNM staging III-IV (P = 0.026). Sixteen patients (16.5%) died during the follow-up. No significant association between γ-H2AX expression and patient survival was detected. The unadjusted HR (hazard ratio) for γ-H2AX positive was 0.84 (95% CI: 0.27, 2.60). In TNM staging subgroup analysis, death only occurred in γ-H2AX negative patients. Our study is the first study to demonstrate that expression of γ-H2AX is associated with TNM staging. Due to the small sample and limited follow-up time, we did not observe a significant association between γ-H2AX and patient survival. γ-H2AX expression could be a potential biomarker for cancer diagnosis and prediction, and further studies are in need.  相似文献   

5.
The mammalian histone H2AX protein functions as a dosage-dependent genomic caretaker and tumor suppressor. Phosphorylation of H2AX to form γ-H2AX in chromatin around DNA double strand breaks (DSBs) is an early event following induction of these hazardous lesions. For a decade, mechanisms that regulate H2AX phosphorylation have been investigated mainly through two-dimensional immunofluorescence (IF). We recently used chromatin immunoprecipitation (ChIP) to measure γ-H2AX densities along chromosomal DNA strands broken in G1 phase mouse lymphocytes. Our experiments revealed that (1) γ-H2AX densities in nucleosomes form at high levels near DSBs and at diminishing levels farther and farther away from DNA ends, and (2) ATM regulates H2AX phosphorylation through both MDC1-dependent and MDC1-independent means. Neither of these mechanisms were discovered by previous IF studies due to the inherent limitations of light microscopy. Here, we compare data obtained from parallel γ-H2AX ChIP and three-dimensional IF analyses and discuss the impact of our findings upon molecular mechanisms that regulate H2AX phosphorylation in chromatin around DNA breakage sites.  相似文献   

6.
The therapeutic potential of bone marrow–derived stromal cells for the therapy of Tay-Sachs disease is primarily related to the restoration of their own GM2 ganglioside storage. With this aim, we produced bone marrow–derived stromal cells from the adult Tay-Sachs animal model and transduced them with a retroviral vector encoding for the -subunit of the lysosomal enzyme -hexosaminidase A (E.C. 3.2.1.52). Our results demonstrate that transduced Tay-Sachs bone marrow–derived stromal cells have -hexosaminidase A comparable to that of bone marrow-derived stromal cells from wild-type mice. Moreover, -hexosaminidase A in transduced Tay-Sachs bone marrow-derived stromal cells was able to hydrolyze the GM2 ganglioside in a feeding experiment, thus demonstrating the correction of the altered phenotype.  相似文献   

7.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder of mid-life onset characterized by involuntary movements and progressive cognitive decline caused by a CAG repeat expansion in exon 1 of the Huntingtin (Htt) gene. Neuronal DNA damage is one of the major features of neurodegeneration in HD, but it is not known how it arises or relates to the triplet repeat expansion mutation in the Htt gene. Herein, we found that imbalanced levels of non-phosphorylated and phosphorylated BRCA1 contribute to the DNA damage response in HD. Notably, nuclear foci of γ-H2AX, the molecular component that recruits various DNA damage repair factors to damage sites including BRCA1, were deregulated when DNA was damaged in HD cell lines. BRCA1 specifically interacted with γ-H2AX via the BRCT domain, and this association was reduced in HD. BRCA1 overexpression restored γ-H2AX level in the nucleus of HD cells, while BRCA1 knockdown reduced the spatiotemporal propagation of γ-H2AX foci to the nucleoplasm. The deregulation of BRCA1 correlated with an abnormal nuclear distribution of γ-H2AX in striatal neurons of HD transgenic (R6/2) mice and BRCA1(+/-) mice. Our data indicate that BRCA1 is required for the efficient focal recruitment of γ-H2AX to the sites of neuronal DNA damage. Taken together, our results show that BRCA1 directly modulates the spatiotemporal dynamics of γ-H2AX upon genotoxic stress and serves as a molecular maker for neuronal DNA damage response in HD.  相似文献   

8.
9.
The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher levels of irradiation-induced γ-H2AX in PBLs may be associated with an elevated risk of colorectal cancer (CRC). In a case-control study, the baseline and ionizing radiation (IR)-induced γ-H2AX levels in PBLs from frequency-matched 320 untreated CRC patients and 320 controls were detected by a laser scanning cytometer-based immunocytochemical method. We used unconditional multivariable logistic regression to evaluate CRC risk by using the ratio of IR-induced γ-H2AX to the baseline levels with adjustment of age, sex and smoking status. We found CRC cases had significantly higher γ-H2AX ratio (1.5 vs. 1.41, P < 0.0001) compared with controls. When using the median γ-H2AX ratio of controls as a cutoff point, we found higher γ-H2AX ratio was significantly associated with an increased risk of CRC (OR = 6.72, 95% CI = 4.54–9.94). Quartile analyses also showed significant dose–response relationship between higher γ-H2AX ratio and increased risk of CRC (P for trend < 0.0001). Age, sex, BMI and smoking status also influenced the association of γ-H2AX ratio with CRC risk; however, no interactions with γ-H2AX ratio were observed. These results support the premise that DSBs in peripheral blood as measured by γ-H2AX level might represent an intermediate phenotype to assess the risk of CRC. Future prospective studies are necessary to confirm our findings in independent populations.  相似文献   

10.
The Maillard Reaction (MR) rate below the glass transition temperature (Tg) for various model glassy food systems was studied at temperatures between 40 °C and 70 °C. As a sample, freeze-dried glucose and lysine systems embedded in various glassy matrices (e.g., polyvinylpyrrolodone and trehalose) were used, and the MR rate below the Tg was compared among the various glassy matrices. The extent of MR was estimated spectrophotometrically from the optical density at 280 nm (OD280), and the MR rate (k280) was determined as a pseudo zero order reaction rate from the time course of OD280. Although k280 was described by the Arrhenius plot, the temperature dependence of k280 was almost the same and the intercept was different among the matrices. From the comparison of k280, it was suggested that the MR rate in glassy matrix was affected not only by the Tg, but also by the hydrogen bonding between MR reactants and glassy matrix.  相似文献   

11.
12.
Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients.  相似文献   

13.
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.  相似文献   

14.
Current advances in cancer biology have identified major pathways involved in tumorigenesis. The association of DNA damage with premalignant stages of tumor progression, genome instability and further oncogenic transformation opens the possibility of using common DNA damage markers for early cancer detection, prediction, prognosis, therapeutics and possibly for cancer prevention. Perhaps the most sensitive DNA damage marker is γ-H2AX formation in the chromatin flanking the free DNA double-stranded ends in double-strand breaks (DSBs) and eroded telomeres, both present during oncogenic transformation. Our group and others found elevated endogenous levels of γ-H2AX in various human cancer cell lines, premalignant lesions and solid tumors. These data suggest that increased DNA damage is a general characteristic of cancer development. γ-H2AX-based assay can be applied to human biopsies, aspirates and, possibly, to mononuclear cells of the peripheral blood. We propose that detection of γ-H2AX could benefit for the early cancer screening and to ascertain the efficiency of clinical treatment involving chemo- and radiotherapeutic protocols.  相似文献   

15.
Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle.  相似文献   

16.
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.  相似文献   

17.
《Biomarkers》2013,18(3):167-180
Abstract

Ionizing radiation cause DNA damage to cells, leading them to cell death via DNA double-strand breaks (DSBs) formation. DSBs formation is followed immediately by histone H2AX phosphorylation (γ-H2AX) and multitude repair factors accumulation. Here we present the methods and the bio-sampling for γ-H2AX detection, γ-H2AX formation in normal cells and animal tissues, in cancer cell lines/tissues and in clinical trials after radiation treatment, alone or in combination with other factors. The purpose of this review is to highlight the use of γ-H2AX, as a marker to assess DNA damage and repair.  相似文献   

18.
This study aims to assess utilisation of the ratio of γ-H2AX in lymphocytes to that in granulocytes (RL/G of γ-H2AX) in blood as a rapid method for population triage and dose estimation during large-scale radiation emergencies. Blood samples from healthy volunteers exposed to 0–10 Gy of 60Co irradiation were collected. The samples were cultured for 0–24 h and then analysed using flow cytometry to measure the levels of γ-H2AX in lymphocytes and granulocytes. The basal RL/G levels of γ-H2AX in healthy human blood, the response of RL/G of γ-H2AX to ionising radiation and its relationship with doses, time intervals after exposure and individual differences were also analysed. The level of γ-H2AX in lymphocytes increased in a dose-dependent manner after irradiation, whereas the level in granulocytes was not affected. A linear dose–effect relationship with low inter-experimental and inter-individual variations was observed. The RL/G of γ-H2AX may be used as a biomarker for population triage and dose estimation during large-scale radiation emergencies if blood samples can be collected within 24 h.  相似文献   

19.
Phosphorylation of the replacement histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called γH2AX can be used as an effective marker for DSB repair and DNA damage response. In this study, we examined a bystander effect (BE) in locally irradiated embryonic human fibroblasts. Using fluorescence microscopy, we found that BE could be observed 1 h after X-ray irradiation (IR) and was completely eliminated 24 h after IR. Using immunohistochemistry and immunoblotting, we also studied kinetics of γH2AX formation and elimination in Syrian hamster and mouse tissues after whole body IR of animals. Analysis of hamster tissues at different times after IR at the dose 5 Gy showed that γH2AX-associated fluorescence in heart was decreased slowly with about a half level remaining 24 h after IR; at the same time, in brain, the level of γH2AX was about 3 times increased over the control level, and in liver, γH2AX level decreased to control values. We also report that in mouse heart the level of γH2AX measured by immunoblotting is lower than in brain, kidney and liver at different times after IR at the dose 3 Gy. Our observations indicate that there are significant variations in dynamics of γH2AX formation and elimination between non-proliferating mammalian tissues. These variations in γH2AX dynamics in indicated organs partially correlated with the expression level of the major kinase genes involved in H2AX phosphorylation (ATM and DNA-PK).  相似文献   

20.
DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号