首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

TP53 gene mutations occur in more than 50% of human cancers and the vast majority of these mutations in human cancers are missense mutations, which broadly occur in DNA binding domain (DBD) (Amino acids 102–292) and mainly reside in six “hotspot” residues. TP53 G245C and R273H point mutations are two of the most frequent mutations in tumors and have been verified in several different cancers. In the previous study of the whole genome sequencing (WGS), we found some mutations of TP53 DBD in esophageal squamous cell carcinoma (ESCC) clinical samples. We focused on two high-frequent mutations TP53 p.G245C and TP53 p.R273H and investigated their oncogenic roles in ESCC cell lines, p53-defective cell lines H1299 and HCT116 p53?/?.

Results

MTS and colony formation assays showed that mutant TP53 G245C and R273H increased cell vitality and proliferation. Flow cytometry results revealed inhibition of ultraviolet radiation (UV)- and ionizing radiation (IR)- induced apoptosis and disruption of TP53-mediated cell cycle arrest after UV, IR and Nocodazole treatment. Transwell assays indicated that mutant TP53 G245C and R273H enhanced cell migration and invasion abilities. Moreover, western blot revealed that they were able to suppress the expression of TP53 downstream genes in the process of apoptosis and cell cycle arrest induced by UV, which suggests that these two mutations can influence apoptosis and growth arrest might be due, at least in part, to down-regulate the expression of P21, GADD45α and PARP.

Conclusions

These results indicate that mutant TP53 G245C and R273H can lead to more aggressive phenotypes and enhance cancer cell malignancy, which further uncover TP53 function in carcinogenesis and might be useful in clinical diagnosis and therapy of TP53 mutant cancers.
  相似文献   

3.
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.  相似文献   

4.

Context

Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options.

Objective

Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC.

Design

In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors.

Results

This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC.

Conclusions

DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors.  相似文献   

5.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.  相似文献   

6.
Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF-II (insulin-like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up-regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis. Nevertheless, sirt1 can act as a tumour suppressor or oncogenic protein. In this study, we found that in H295R and SW13 cell lines, sirt1 expression is inhibited by sirtinol, a potent inhibitor of sirt1 activity. In addition, sirtinol is able to decrease ACC cell proliferation, colony and spheroids formation and to activate the intrinsic apoptotic mechanism. Particularly, we observed that sirtinol interferes with E2/ERα and IGF1R (insulin growth factor 1 receptor) pathways by decreasing receptors expression. Sirt1 involvement was confirmed by using a specific sirt1 siRNA. More importantly, we observed that sirtinol can synergize with mitotane, a selective adrenolitic drug, in inhibiting adrenocortical cancer cell growth. Collectively, our data reveal an oncogenic role for sirt1 in ACC and its targeting could implement treatment options for this type of cancer.  相似文献   

7.
8.
p73 in apoptosis   总被引:3,自引:0,他引:3  
The TP53 tumour-suppressor gene belongs to a family that includes the two recently identified homologues TP63 and TP73. Overexpression of p73 can activate typical p53-responsive genes and induce apoptosis like p53. In addition, activation of p73 has been implicated in apoptotic cell death induced by aberrant cell proliferation and some forms of DNA-damage. These data together with the localization of TP73 on chromosome 1p36, a region frequently deleted in a variety of human cancers, led to the hypothesis that p73 has tumour suppressor activity just like p53. However, despite its proapoptotic activity in vitro, the lack of tumour-formation in p73 knock-out mice and primary human tumour data demonstrating overexpression of wild-type p73 currently argue against p73 being a classical tumour suppressor. Interestingly, in contrast to TP53, TP73 gives rise to a complex pattern of pro- and antiapoptotic p73 isoforms generated by differential splicing and alternative promoter usage. Therefore further insight into the function and regulation of these structurally and functionally diverse p73 proteins is needed to elucidate the role of TP73 for apoptosis and human tumorigenesis.  相似文献   

9.
10.
Recent studies have demonstrated that p21WAF1 (now known as CDKN1A)-dependent and -independent accelerated senescence responses are a major determinant of the sensitivity of cancer cells to chemotherapeutic agents. The objective of the present study was to determine whether human solid tumor-derived cell lines that express wild-type TP53 can exhibit levels of CDKN1A induction after exposure to ionizing radiation that are sufficient to activate the accelerated senescence program. Exposure to 60Co gamma radiation (< or =8 Gy) triggered accelerated senescence in all five TP53 wild-type tumor cell lines examined, albeit to differing degrees. Three of the TP53 wild-type tumor cell lines, HCT116, A172 and SKNSH, activated the TP53 signaling pathway similarly to normal human fibroblasts, as judged by the nuclear accumulation of TP53, magnitude and duration of induction of CDKN1A mRNA and CDKN1A protein, and propensity to undergo accelerated senescence after radiation exposure. In the clonogenic survival assay, the degree of radiosensitivity of these three tumor cell lines was also in the range displayed by normal human fibroblasts. On the other hand, two other TP53 wild-type tumor cell lines, A498 and A375, did not maintain high levels of CDKN1A mRNA and CDKN1A protein at late times postirradiation and exhibited only low levels of accelerated senescence after radiation exposure. Studies with a CDKN1A knockout cell line (HCT116CDKN1A-/-) confirmed that the radiation-triggered accelerated senescence is dependent on CDKN1A function. We conclude that (1) clinically achievable doses of ionizing radiation can trigger CDKN1A-dependent accelerated senescence in some human tumor cell lines that express wild-type TP53; and (2) as previously documented for normal human fibroblasts, some TP53 wild-type tumor cell lines (e.g. HCT116, A172 and SKNSH) may lose their clonogenic potential in response to radiation-inflicted injury primarily through undergoing accelerated senescence.  相似文献   

11.
Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive lung disease. Its aetiology is thought to involve damage to the epithelium and abnormal repair. Alveolar epithelial cells near areas of remodelling show an increased expression of proapoptotic molecules. Therefore, we investigated the role of genes involved in cell cycle control in IPF. Genotypes for five single nucleotide polymorphisms (SNPs) in the tumour protein 53 (TP53) gene and four SNPs in cyclin-dependent kinase inhibitor 1A (CDKN1A), the gene encoding p21, were determined in 77 IPF patients and 353 controls. In peripheral blood mononuclear cells (PBMC) from 16 healthy controls mRNA expression of TP53 and CDKN1A was determined.Rs12951053 and rs12602273, in TP53, were significantly associated with survival in IPF patients. Carriers of a minor allele had a 4-year survival of 22% versus 57% in the non-carrier group (p = 0.006). Rs2395655 and rs733590, in CDKN1A, were associated with an increased risk of developing IPF. In addition, the rs2395655 G allele correlated with progression of the disease as it increased the risk of a rapid decline in lung function. Functional experiments showed that rs733590 correlated significantly with CDKN1A mRNA expression levels in healthy controls.This is the first study to show that genetic variations in the cell cycle genes encoding p53 and p21 are associated with IPF disease development and progression. These findings support the idea that cell cycle control plays a role in the pathology of IPF. Variations in TP53 and CDKN1A can impair the response to cell damage and increase the loss of alveolar epithelial cells.  相似文献   

12.
Studies addressing the effects of supraphysiological levels of IGF-1 on oocyte developmental competence are relevant for unravelling conditions resulting in high bioavailability of IGF-1, such as the polycystic ovary syndrome (PCOS). This study investigated the effects of supraphysiological levels of IGF-1 during in vivo folliculogenesis on the morula-blastocyst transition in bovine embryos. Compacted morulae were non-surgically collected and frozen for subsequent mRNA expression analysis (IGF1R, IGBP3, TP53, AKT1, SLC2A1, SLC2A3, and SLC2A8), or underwent confocal microscopy analysis for protein localization (IGF1R and TP53), or were cultured in vitro for 24 h. In vitro-formed blastocysts were subjected to differential cell staining. The mRNA expression of SLC2A8 was higher in morulae collected from cows treated with IGF-1. Both IGF1R and TP53 protein were present in the plasma membrane and cytoplasm. IGF-1 treatment did not affect protein localization of both IGF1R and TP53. In vitro-formed blastocysts derived from morulae recovered from IGF-1-treated cows displayed a higher number of cells in the inner cell mass (ICM). Total cell number (TCN) of in vitro-formed blastocysts was not affected. A higher mean ICM/TCN proportion was observed in in vitro-formed blastocysts derived from morulae collected from cows treated with IGF-1. The percentage of in vitro-formed blastocysts displaying a low ICM/TCN proportion was decreased by IGF-1 treatment. In vitro-formed blastocysts with a high ICM/TCN proportion were only detected in IGF-1 treated cows. Results show that even a short in vivo exposure of oocytes to a supraphysiological IGF-1 microenvironment can increase ICM cell proliferation in vitro during the morula to blastocyst transition.  相似文献   

13.
Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53R167H mutant allele, orthologous to oncogenic human mutant TP53R175H and mouse Trp53R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.  相似文献   

14.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

15.
TP53 is a classic tumor suppressor, but its role in kidney cancer remains unclear. In our study, we tried to explain the role of p53 in kidney cancer through the p53-related enhancer RNA pathway. Functional experiments were used to explore whether P53-bound enhancer regions 2 (p53BER2) has a role in the cell cycle and senescence response of TP53-wild type (WT) renal cancer cells in vitro or vivo. RNA-sequencing was used to identify the potential target of p53BER2. The results showed that the expression level of P53BER2 was downregulated in renal cancer tissues and cell lines, further dual-luciferase experiments and APR-256-reactivated experiments showed p53BER2 expresses in a p53-dependent way. Moreover, knockdown p53BER2 could reverse nutlin-3-induced cytotoxic effect in TP53-WT cell lines. Further exploration showed the downregulation of p53BER2 could reverse nutlin-3-induced G1-arrest and senescence in TP53-WT cell lines. What is more, the knockdown of p53BER2 showed resistance to nutlin-3 treatment in vivo. Additionally, we found BRCA2 could be regulated by p53BER2 in vitro and vivo; further experiment showed p53BER2 could induce cell-cycle arrest and DNA repair by mediating BRCA2. In summary, the p53-associated enhancer RNA-p53BER2 mediates the cell cycle and senescence of p53 in TP53-WT renal cancer cells.Subject terms: Tumour biomarkers, Renal cell carcinoma  相似文献   

16.
17.
18.
Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.Subject terms: Cancer therapy, Haematological cancer  相似文献   

19.
20.
TP53 is the most frequently mutated gene in human cancer and thus an attractive target for novel cancer therapy. Several compounds that can reactive mutant p53 protein have been identified. APR-246 is currently being tested in a phase II clinical trial in high-grade serous ovarian cancer. We have used RNA-seq analysis to study the effects of APR-246 on gene expression in human breast cancer cell lines. Although the effect of APR-246 on gene expression was largely cell line dependent, six genes were upregulated across all three cell lines studied, i.e., TRIM16, SLC7A11, TXNRD1, SRXN1, LOC344887, and SLC7A11-AS1. We did not detect upregulation of canonical p53 target genes such as CDKN1A (p21), 14-3-3σ, BBC3 (PUMA), and PMAIP1 (NOXA) by RNA-seq, but these genes were induced according to analysis by qPCR. Gene ontology analysis showed that APR-246 induced changes in pathways such as response to oxidative stress, gene expression, cell proliferation, response to nitrosative stress, and the glutathione biosynthesis process. Our results are consistent with the dual action of APR-246, i.e., reactivation of mutant p53 and modulation of redox activity. SLC7A11, TRIM16, TXNRD1, and SRXN1 are potential new pharmacodynamic biomarkers for assessing the response to APR-246 in both preclinical and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号