首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem–loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNAGln(UUG), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s2U moiety of mcm5s2U34 of tRNAGln(UUG) and the other two cytoplasmic species with mcm5s2U34, that the reduced s2U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s2U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNAGln(UUG) at permissive temperature, and indicates that Ψ39 is important for the function of tRNATrp(CCA) in trm10Δ pus3Δ mutants and of tRNALeu(CAA) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions.  相似文献   

3.
A synthetic genetic array was used to identify lethal and slow-growth phenotypes produced when a mutation in TRM6, which encodes a tRNA modification enzyme subunit, was combined with the deletion of any non-essential gene in Saccharomyces cerevisiae. We found that deletion of the REX1 gene resulted in a slow-growth phenotype in the trm6-504 strain. Previously, REX1 was shown to be involved in processing the 3′ ends of 5S rRNA and the dimeric tRNAArg-tRNAAsp. In this study, we have discovered a requirement for Rex1p in processing the 3′ end of tRNAiMet precursors and show that precursor tRNAiMet accumulates in a trm6-504 rex1Δ strain. Loss of Rex1p results in polyadenylation of its substrates, including tRNAiMet, suggesting that defects in 3′ end processing can activate the nuclear surveillance pathway. Finally, purified Rex1p displays Mg2+-dependent ribonuclease activity in vitro, and the enzyme is inactivated by mutation of two highly conserved amino acids.  相似文献   

4.
To estimate the effect of modified nucleotide 37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAPhe +Y and Phe-tRNAPhe –Y) with the A site of complex [70S · poly(U) · deacylated tRNAPhe in the P site] was assayed at 0–20°C. As comparisons with native Phe-tRNAPhe +Y showed, removal of the Y base decreased the association constant of Phe-tRNAPhe –Y and the complex by an order of magnitude at every temperature tested, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNAPhe bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAPhe –Y but not for Phe-tRNAPhe +Y. Thus, the modified nucleotide 3" of the Phe-tRNAPhe anticodon stabilized the codon–anticodon interaction both in the A and P sites of the 70S ribosome.  相似文献   

5.
Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2′-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNALeuCmAA and tRNALeucmnm5UmAA. Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2′-O-methylation at position 34 in both tRNALeuCmAA and tRNALeucmnm5UmAA. Loss of YibK methylation reduces the efficiency of codon–wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/β knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2′-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N6-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.  相似文献   

6.
The degenerate base at position 34 of the tRNA anticodon is the target of numerous modification enzymes. In Saccharomyces cerevisiae, five tRNAs exhibit a complex modification of uridine 34 (mcm5U34 and mcm5s2U34), the formation of which requires at least 25 different proteins. The addition of the last methyl group is catalyzed by the methyltransferase Trm9p. Trm9p interacts with Trm112p, a 15-kDa protein with a zinc finger domain. Trm112p is essential for the activity of Trm11p, another tRNA methyltransferase, and for Mtq2p, an enzyme that methylates the translation termination factor eRF1/Sup45. Here, we report that Trm112p is required in vivo for the formation of mcm5U34 and mcm5s2U34. When produced in Escherichia coli, Trm112p forms a complex with Trm9p, which renders the latter soluble. This recombinant complex catalyzes the formation of mcm5U34 on tRNA in vitro but not mcm5s2U34. An mtq2-0 trm9-0 strain exhibits a synthetic growth defect, thus revealing the existence of an unexpected link between tRNA anticodon modification and termination of translation. Trm112p is associated with other partners involved in ribosome biogenesis and chromatin remodeling, suggesting that it has additional roles in the cell.  相似文献   

7.
The presence of tricyclic wyosine derivatives 3′-adjacent to anticodon is a hallmark of tRNAPhe in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N1-methylation of guanosine and C7-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m1G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNAPhe, is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.  相似文献   

8.
9.
10.
We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctDelta76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Delta232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Delta232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Delta232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.  相似文献   

11.
12.
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.  相似文献   

13.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

14.
This paper presents the first example of a complete gene sequence coding for and expressing a biologically functional human tRNA methyltransferase: the hTRM1 gene product tRNA(m22G)dimethyltransferase. We isolated a human cDNA (1980 bp) made from placental mRNA coding for the full-length (659 amino acids) human TRM1 polypeptide. The sequence was fairly similar to Saccharomyces cerevisiae Trm1p, to Caenorhabditis elegans TRM1p and to open reading frames (ORFs) found in mouse and a plant (Arabidopsis thaliana) DNA. The human TRM1 gene was expressed at low temperature in Escherichia coli as a functional recombinant protein, able to catalyze the formation of dimethylguanosine in E.coli tRNA in vivo. It targeted solely position G26 in T7 transcribed spliced and unspliced human tRNATyr in vitro and in yeast trm1 mutant tRNA. Thus, the human TRM1 protein is a tRNA(m22G26)dimethyltransferase. Compared with yeast Trm1p, hTRM1p has a C-terminal protrusion of ~90 amino acids which shows similarities to a mouse protein related to RNA splicing. A deletion of these 90 C-terminal amino acids left the modification activity in vitro intact. Among point mutations in the hTRM1 gene, only those located in conserved regions of hTRM1p completely eliminated modification activity.  相似文献   

15.
For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant K d is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.  相似文献   

16.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

17.
18.
Function of Y in codon-anticodon interaction of tRNA Phe   总被引:7,自引:0,他引:7  
Molar association constants of binding oligonucleotides to the anticodon loops of (yeast) tRNAPhe, (yeast) tRNAHClPhe and (E. coli) tRNAFMet have been determined by equilibrium dialysis. From the temperature dependence of the molar association constants, ΔF, ΔH and ΔS of oligomer-anticodon loop interaction have been determined. The data indicate that the free energy change of codon-anticodon interaction is highly influenced by the presence of a modified purine (tRNAPhe), of an unmodified purine (tRNAFMet) or its absence (tRNAHClPhe). Excision of the modified purine Y in the anticodon loop of tRNAPhe results in a conformational change of the anticodon loop, which is discussed on the basis of the corresponding changes in ΔF, ΔH and ΔS.  相似文献   

19.
N7-methylguanine at position 46 (m7G46) in tRNA is produced by tRNA (m7G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (ΔtrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the ΔtrmB strain and the lack of the m7G46 modification in tRNAPhe were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the ΔtrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m7G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m1G37, suggesting that the m7G46 positively affects their formations. Although the lack of the m7G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNAPhe, they cause a decrease in melting temperature of class I tRNA and degradation of tRNAPhe and tRNAIle. 35S-Met incorporation into proteins revealed that protein synthesis in ΔtrmB cells is depressed above 70°C. At 80°C, the ΔtrmB strain exhibits a severe growth defect. Thus, the m7G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m7G46 modification supports introduction of other modifications.  相似文献   

20.
N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号