首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We previously showed that macrophages from macrophage-specific ATP-binding cassette transporter A1 (ABCA1) knockout (Abca1-M/-M) mice had an enhanced proinflammatory response to the Toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS), compared with wild-type (WT) mice. In the present study, we demonstrate a direct association between free cholesterol (FC), lipid raft content, and hyper-responsiveness of macrophages to LPS in WT mice. Abca1-M/-M macrophages were also hyper-responsive to specific agonists to TLR2, TLR7, and TLR9, but not TLR3, compared with WT macrophages. We hypothesized that ABCA1 regulates macrophage responsiveness to TLR agonists by modulation of lipid raft cholesterol and TLR mobilization to lipid rafts. We demonstrated that Abca1-M/-M vs. WT macrophages contained 23% more FC in isolated lipid rafts. Further, mass spectrometric analysis suggested raft phospholipid composition was unchanged. Although cell surface expression of TLR4 was similar between Abca1-M/-M and WT macrophages, significantly more TLR4 was distributed in membrane lipid rafts in Abca1-M/-M macrophages. Abca1-M/-M macrophages also exhibited increased trafficking of the predominantly intracellular TLR9 into lipid rafts in response to TLR9-specific agonist (CpG). Collectively, our data suggest that macrophage ABCA1 dampens inflammation by reducing MyD88-dependent TLRs trafficking to lipid rafts by selective reduction of FC content in lipid rafts.  相似文献   

2.
Schizophrenia patients are often obese or overweight and poor dietary choices appear to be a factor in this phenomenon. Poor diet has been found to have complex consequences for the mental state of patients. Thus, this study investigated whether an unhealthy diet [i.e. high fat diet (HFD)] impacts on the behaviour of a genetic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. transmembrane domain Nrg1 mutant mice: Nrg1 HET). Female Nrg1 HET and wild‐type‐like littermates (WT) were fed with either HFD or a control chow diet. The mice were tested for baseline (e.g. anxiety) and schizophrenia‐relevant behaviours after 7 weeks of diet exposure. HFD increased body weight and impaired glucose tolerance in all mice. Only Nrg1 females on HFD displayed a hyper‐locomotive phenotype as locomotion‐suppressive effects of HFD were only evident in WT mice. HFD also induced an anxiety‐like response and increased freezing in the context and the cued version of the fear conditioning task. Importantly, CHOW‐fed Nrg1 females displayed impaired social recognition memory, which was absent in HFD‐fed mutants. Sensorimotor gating deficits of Nrg1 females were not affected by diet. In summary, HFD had complex effects on the behavioural phenotype of test mice and attenuated particular cognitive deficits of Nrg1 mutant females. This topic requires further investigations thereby also considering other dietary factors of relevance for schizophrenia as well as interactive effects of diet with medication and sex.  相似文献   

3.
The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b?/? mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b?/? mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.  相似文献   

4.
5.
ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer''s disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.  相似文献   

6.
ABCA1, a member of the ATP-binding cassette family of transporters, lipidates ApoE (apolipoprotein A) and is essential for the generation of HDL (high-density lipoprotein)-like particles in the CNS (central nervous system). Lack of Abca1 increases amyloid deposition in several AD (Alzheimer''s disease) mouse models. We hypothesized that deletion of only one copy of Abca1 in APP23 (where APP is amyloid precursor protein) AD model mice will aggravate memory deficits in these mice. Using the Morris Water Maze, we demonstrate that 2-year-old Abca1 heterozygous APP23 mice (referred to as APP23/het) have impaired learning during acquisition, and impaired memory retention during the probe trial when compared with age-matched wild-type mice (referred to as APP23/wt). As in our previous studies, the levels of ApoE in APP23/het mice were decreased, but the differences in the levels of Aβ and thioflavin-S-positive plaques between both groups were insignificant. Importantly, dot blot analysis demonstrated that APP23/het mice have a significantly higher level of soluble A11-positive Aβ (amyloid β protein) oligomers compared with APP23/wt which correlated negatively with cognitive performance. To confirm this finding, we performed immunohistochemistry with the A11 antibody, which revealed a significant increase of A11-positive oligomer structures in the CA1 region of hippocampi of APP23/het. This characteristic region-specific pattern of A11 staining was age-dependent and was missing in younger APP23 mice lacking Abca1. In contrast, the levels of Aβ*56, as well as other low-molecular-mass Aβ oligomers, were unchanged among the groups. Overall, the results of the present study demonstrate that in aged APP23 mice memory deficits depend on Abca1 and are likely to be mediated by the amount of Aβ oligomers deposited in the hippocampus.  相似文献   

7.
ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12−/− skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [14C]serine labeling in ex vivo skin cultures. A defect was found in β-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12−/− epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12+/+ epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12−/− stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12−/− epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies.  相似文献   

8.
Mutations in the A class of ATP-binding cassette transporters (ABCA) are causally implicated in three human diseases: Tangier disease (ABCA1), Stargadt's macular degeneration (ABCA4), and neonatal respiratory failure (ABCA3). Both ABCA1 and ABCA4 have been shown to transport lipids across cellular membranes, and ABCA3 may play a similar role in transporting pulmonary surfactant. Although the functions of the other 10 ABCA class transporters identified in the human genome remain obscure, ABCA7-transfected cells have been shown to efflux lipids in response to stimulation by apolipoprotein A-I. In an effort to elucidate the physiologic role of ABCA7, we generated mice lacking this transporter (Abca7-/- mice). Homozygous null mice were produced from intercrosses of heterozygous null mice at the expected Mendelian frequency and developed normally without any obvious phenotypic abnormalities. Cholesterol and phospholipid efflux stimulated by apolipoprotein A-I from macrophages isolated from wild type and Abca7-/- mice did not differ, suggesting that these activities may not be central to the physiological role of the transporter in vivo. Abca7-/- females, but not males, had significantly less visceral fat and lower total serum and high density lipoprotein cholesterol levels than wild type, gender-matched littermates. ABCA7 expression was detected in hippocampal and cortical neurons by in situ hybridization and in brain and white adipose tissue by Western blotting. Induction of adipocyte differentiation from 3T3 fibroblasts in culture led to a marked increase in ABCA7 expression. These studies suggest that ABCA7 plays a novel role in lipid and fat metabolism that Abca7-/- mice can be used to elucidate.  相似文献   

9.
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease.  相似文献   

10.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   

11.
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.  相似文献   

12.
Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3 over Cl and inhibited by I and NPPB. Elevated NO3 currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH.  相似文献   

13.
Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer’s disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer’s disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer’s disease.  相似文献   

14.
Hypercholesterolemia has strong heritability and about 40–60% of hypercholesterolemia is caused by genetic risk factors. A number of monogenic genes have been identified so far for familial hypercholesterolemia (FH). However, in the general population, more than 90% of individuals with LDL cholesterol over 190 mg/dL do not carry known FH mutations. Large scale whole-exome sequencing has identified thousands of variants that are predicted to be loss-of-function (LoF) and each individual has a median of about twenty rare LoF variants and several hundreds more common LoF variants. However, majority of those variants have not been characterized and their functional consequence remains largely unknown. Rs77542162 is a common missense variant in ABCA6 and is strongly associated with hypercholesterolemia in different populations. ABCA6 is a cholesterol responsive gene and has been suggested to play a role in lipid metabolism. However, whether and how rs77542162 and ABCA6 regulate lipoprotein metabolism remain unknown. In current study, we systemically characterized the function of rs77542162 and ABCA6 in cultured cells and in vivo of rodents. We found that Abca6 is specifically expressed on the basolateral surface of hepatocytes in mouse liver. The rs77542162 variant disrupts ABCA6 protein stability and results in loss of functional protein. However, we found no evidence that Abca6 plays a role in lipoprotein metabolism in either normal mice or hypercholesterolemia mice or hamsters. Thus, our results suggest that Abca6 does not regulate lipoprotein metabolism in rodents and highlight the challenge and importance of functional characterization of disease-associated variants in animal models.  相似文献   

15.
The Morris Water Maze (MWM) was first established by neuroscientist Richard G. Morris in 1981 in order to test hippocampal-dependent learning, including acquisition of spatial memoryand long-term spatial memory 1. The MWM is a relatively simple procedure typically consisting of six day trials, the main advantage being the differentiation between the spatial (hidden-platform) and non-spatial (visible platform) conditions 2-4. In addition, the MWM testing environment reduces odor trail interference 5. This has led the task to be used extensively in the study of the neurobiology and neuropharmacology of spatial learning and memory. The MWM plays an important role in the validation of rodent models for neurocognitive disorders such as Alzheimer’s Disease 6, 7. In this protocol we discussed the typical procedure of MWM for testing learning and memory and data analysis commonly used in Alzheimer’s disease transgenic model mice.  相似文献   

16.
Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with (125)I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-I(Tg)) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P < 0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-I(Tg) mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo. We conclude that ABCA1 is not required for in vivo remodeling of small HDLs to larger HDL subfractions and that the hypercatabolism of normal HDL particles in knockout mice is attributable to a selective catabolism of HDL apoA-I by the kidney.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could partially contribute to learning and memory problems of AD patients.  相似文献   

18.
Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels) have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains.We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively.Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.  相似文献   

19.
Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease.  相似文献   

20.
Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1−/− macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1+/+ and Abca1−/− macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1+/+ macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1−/− rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response.Lipid rafts are cholesterol-enriched membrane microdomains, thought to be present in all cells, that concentrate and organize cell-surface signal transduction events in several signaling cascades, including those of the Toll-like receptors (TLRs) (1). The selectivity of rafts for particular proteins, and, consequently, the signal strength of pathways initiating from ligated raft-resident receptors, are thought to derive in large part from the high cholesterol content of raft microdomains (24). In vitro, altering raft cholesterol of living cells downward or upward with chemical tools (e.g. cyclodextrins) leads to parallel changes in raft protein abundance (3, 4). The relevance of cholesterol-driven alterations in the raft proteome to disease is suggested by reports that hypercholesterolemia cholesterol-loads macrophage rafts and amplifies their responsiveness to lipopolysaccharide (LPS) (3, 4). Proteomic strategies have recently been applied to raft isolates from a variety of cell types, aiming to better understand the identity of proteins tonically present in rafts, as well as proteins dynamically recruited to rafts upon cell stimulation (2, 58). To date, however, most reports have used cell lines of uncertain physiological relevance. In addition, although raft cholesterol levels are regulated in vivo by intracellular cholesterol trafficking (1), no reports to date have sought to define how the raft proteome is physiologically regulated by cholesterol trafficking proteins.ATP binding cassette (ABC) A1, a member of the ABC transporter superfamily, plays a key role in regulating levels of cholesterol in macrophages and other cells via promoting efflux of cellular cholesterol to extracellular acceptors, in particular lipid-free apolipoprotein (apo) A-I (9). The importance of ABCA11 to human health is clearly illustrated by Tangier disease, a rare ABCA1 mutation syndrome typified by severe HDL deficiency, widespread macrophage foam cells, and premature atherosclerosis (10). In addition, the large number of common ABCA1 polymorphisms that have been associated with human cardiovascular disease (10) suggest a broad-spanning impact of ABCA1 on human health. It remains somewhat controversial whether ABCA1-effluxed cholesterol derives from raft or extra-raft membranes (11). Nonetheless, both human Tangier disease cells and ABCA1-null murine macrophages have been shown to have greatly expanded lipid rafts that contain increased cholesterol and increased TLR4 (12, 13). These changes are associated with enhanced responsiveness to LPS that can be reversed by cholesterol depletion (1315). Collectively, these findings indicate that ABCA1 may regulate the raft proteome and innate immune response through control of raft cholesterol. However, no proteomic analysis of rafts from ABCA1-deficient cells has been reported to date.Herein, we report a proteomic analysis of raft isolates from naive and LPS-stimulated Abca1+/+ and Abca1−/− primary murine macrophages. Unexpectedly, we found that ABCA1 deletion and LPS stimulation induced many similar changes in the raft proteome. Stomatin-like protein 2 (SLP-2), a lesser known member of the stomatin-prohibitin-flotillin-HflK/C (SPFH) family of membrane scaffolding proteins, was unique among SPFH proteins in being robustly up-regulated in rafts of unstimulated Abca1−/− cells compared with Abca1+/+ counterparts. We found that rafts of SLP-2 knockdown cells were abnormal, displaying increased binding of cholera toxin subunit B—a probe for the raft-specific ganglioside GM1—but markedly decreased protein, including flotillins-1 and -2, and CD14. Whereas SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux, it reduced macrophage responsiveness to LPS and multiple additional TLR ligands. Taken together, we report that ABCA1 regulates the macrophage raft proteome and identify SLP-2 as a novel ABCA1-dependent regulator of raft composition that controls the innate immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号