首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorption of Zn(II) ions from aqueous solution by chitosan derivatives (KCTS and HKCTS) was studied in a batch adsorption system. The adsorption capacities and rates of Zn(II) ions onto chitosan derivatives were evaluated. The adsorption isothermal data could be well interpreted by the Langmuir and Freundlich models. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical adsorption is the rate-limiting step. The apparent adsorption activation energy were 25.47 kJ mol and 5.473 kJ mol, respectively, and the second-order adsorption constant for KCTS and HKCTS were 0.00311 g (mg min)−1 and 0.005 g (mg min)−1, respectively.  相似文献   

2.
Metal complexes of d-glucose (d-Glc) from large cation containing dibromo-dichloro salts of dipositive metals [NEt4]2[MBr2Cl2] (M = Mn, Co, Ni, Cu and Zn) and the disodium salt of glucose were synthesized from a MeOH:MeCN mixture. The complexes were characterized by UV-vis absorption, circular dichroism, IR and proton magnetic resonance spectroscopies, and by elemental analysis, and were found to be Na[M(d-Glc)(OMe)Cl]. Cyclic voltammetric studies of these complexes, in the acidic to neutral pH range, indicated no dissociation, even in highly acidic conditions.This paper is dedicated to Professor Richard H. Holm (Harvard University) on the occasion of his 60th birthday.  相似文献   

3.
The adaptive response of Escherichia coli cells to differing intracellular and extracellular Zn(II) concentrations was evaluated by two-dimensional gel electrophoresis and peptide identifications. Twenty-one Zn(II)-responsive proteins, which were previously not known to be associated with Zn(II), were identified. Most of the proteins were related to cellular metabolism and include membrane transporters and glycolytic and TCA-associated enzymes. The expression levels of no known Zn(II) transporters were identified with these studies. The results of these studies suggest a role of Zn(II) in the expression levels of several E. coli proteins, and the results are discussed in light of recent genomic profiling studies on the adaptive response of E. coli cells to stress by Zn(II) excess.  相似文献   

4.
To analyze whether Escherichia coli strains that cause urinary tract infections (UPEC) share virulence characteristics with the diarrheagenic E. coli (DEC) pathotypes and to recognize their genetic diversity, 225 UPEC strains were examined for the presence of various properties of DEC and UPEC (type of interaction with HeLa cells, serogroups and presence of 30 virulence genes). No correlation between adherence patterns and serogroups was observed. Forty-five serogroups were found, but 64% of the strains belonged to one of the 12 serogroups (O1, O2, O4, O6, O7, O14, O15, O18, O21, O25, O75, and O175) and carried UPEC virulence genes (pap, hly, aer, sfa, cnf). The DEC genes found were: aap, aatA, aggC, agg3C, aggR, astA, eae, ehly, iha, irp2, lpfA(O113), pet, pic, pilS, and shf. Sixteen strains presented aggregative adherence and/or the aatA sequence, which are characteristics of enteroaggregative E. coli (EAEC), one of the DEC pathotypes. In summary, certain UPEC strains may carry DEC virulence properties, mostly associated to the EAEC pathotype. This finding raises the possibility that at least some faecal EAEC strains might represent potential uropathogens. Alternatively, certain UPEC strains may have acquired EAEC properties, becoming a potential cause of diarrhoea.  相似文献   

5.
Synthesis, structure and spectroscopic characterization of 2-thiophenealdehyde-N(4)-napthylthiosemicarbazone and its complexes with biologically important Zn(II) and toxic Hg(II) metal ions have been reported. The crystal structure of the complexes reveals that both are distorted tetrahedral. In the Hg(II) complex the ligand is neutral and mondented where as in Zn(II) complex the ligand is bidented and anionic. Whereas conductivity measurement study shows both the complexes are molecular species. The beautiful changes in absorption spectra along with isosbestic points upon addition of respective metal salts to the ligand solution convincingly support the formation of metal complexes in solution phase. The other spectroscopic studies also show good correlation with their solid state structures.  相似文献   

6.
7.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

8.
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(Cys)2H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0×10−4 M.  相似文献   

9.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

10.
The speciation of several insulin-mimetic/enhancing VO(IV) and Zn(II) complexes in human blood serum was studied and a comparison was made concerning the ability of the serum components to interact with the original metal complexes and the distribution of the metal ions between the low and the high molecular fractions of the serum. It was found that the low molecular mass components may play a larger role in transporting Zn(II) than in the case with VO(IV). Among the high molecular mass serum proteins, transferrin is the primary binder of VO(IV), and albumin is that of Zn(II). The results revealed that protein-ligand interactions may influence the metal ion distribution in the serum.  相似文献   

11.
A fluorescent chemosensor, Py-His, based on histidine was easily synthesized in solid phase synthesis. Py-His displayed a highly sensitive ratiometric response to Zn(II) with potent binding affinity (Ka = 1.17 × 1013 M?2) in aqueous solutions. The detection limit of Py-His for Zn(II) was calculated as 80.8 nM. Moreover, Py-His distinguished Zn(II) and Hg(II) by different ratiometric response type; the chemosensor showed a more enhanced increase of excimer emission intensity to Zn(II) than Hg(II). Upon addition of Ag(I) and Cu(II), Py-His showed a turn-off response mainly due to the quenching effect of these metal ions. The binding stoichiometry (2:1 or 1:1) of Py-His to target metal ions played a critical role in the fluorescent response type (ratiometric and turn off response) to target metal ions. The role of imidazole group of Py-His for ratiometric detection of Zn(II) was proposed by pH titration experiments.  相似文献   

12.
G-quadruplexes (GQ) are formed by the association of guanine-rich stretches of DNA. Certain small molecules can influence kinetics and thermodynamics of this association. Understanding the mechanism of ligand-assisted GQ folding is necessary for the design of more efficient cancer therapeutics. The oligonucleotide d(TAGGG)2 forms parallel bimolecular GQ in the presence of ≥66 mM K+; GQs are not formed under Na+, Li+ or low K+ conditions. The thermodynamic parameters for GQ folding at 60 μM oligonucleotide and 100 mM KCl are ΔH = −35 ± 2 kcal mol−1 and ΔG310 = −1.4 kcal mol−1. Quadruplex [d(TAGGG)2]2 binds 2-3 K+ ions with Kd of 0.5 ± 0.2 mM. Our work addresses the question of whether metal free 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) and its Zn(II), Cu(II), and Pt(II) derivatives are capable of facilitating GQ folding of d(TAGGG)2 from single stranded, or binding to preformed GQ, using UV-vis and circular dichroism (CD) spectroscopies. ZnTMPyP4 is unique among other porphyrins in its ability to induce GQ structure of d(TAGGG)2, which also requires at least a low amount of potassium. ZnTMPyP4 binds with 2:1 stoichiometry possibly in an end-stacking mode with a ∼106 M−1 binding constant, determined through UV-vis and ITC titrations. This process is entropically driven and has ΔG298 of −8.0 kcal mol−1. TMPyP4 binds with 3:1 stoichiometry and Ka of ∼106 M−1. ZnTMPyP4 and TMPyP4 are efficient stabilizers of [d(TAGGG)2]2 displaying ΔT1/2 of 13.5 and 13.8 °C, respectively, at 1:2 GQ to porphyrin ratio; CuTMPyP4 shows a much weaker effect (ΔT1/2 = 4.7 °C) and PtTMPyP4 is weakly destabilizing (ΔT1/2 = −2.9 °C). The selectivity of ZnTMPyP4 for GQ versus dsDNA is comparable to that of TMPyP4. The ability of ZnTMPyP4 to bind and stabilize GQ, to induce GQ formation, and speed up its folding may suggest an important biological activity for this molecule.  相似文献   

13.
Zinc (Zn), an essential trace element, and its complexes have recently been known to exhibit insulinomimetic activities. However, the action mechanism of Zn(II) has yet been obscure. The purpose of the present study was to estimate the action mechanism of the Zn(II) complexes. We found first that Zn given in the chemical forms such as Zn(maltolate)2 and Zn(threoninate)2 complexes is highly uptaken in the isolated rat adipocytes compared with that of Zn(picolinate)2. Then, the action mechanism for the insulinomimetic activities was examined in terms of free fatty acid release from the adipocytes. Four Zn(II) compounds, ZnSO4, Zn(picolinate)2, Zn(maltolate)2, and Zn(threoninate)2, inhibited the free fatty acid release from the adipocytes treated with epinephrine (adrenaline). By using several inhibitors for fatty acids and glucose metabolisms in the adipocytes, the following results were obtained. (1) Zn(picolinic acid)2 complex acts on the insulin receptor and PI3-k, which relate to the glucose uptake, as indicated by the experiments using hydroxy-2-naphthalenylmethyl phosphonic acid tris acetoxy methyl ester (HNMPA-(AM)3) and wortmannin, respectively. (2) ZnSO4, and Zn(maltolate)2 and Zn(threoninate)2 complexes affect a glucose transporter 4 (GLUT 4), which is involved in the glucose uptake as indicated by the results using cytochalasin B. (3) Four Zn(II) compounds affect the activation of the phosphodiesterase as indicated by the experiments using cilostamide. These results indicate that the Zn(II) compounds promote the glucose uptake into the adipocytes by affecting at least three sites in the adipocytes, which in turn normalize the blood glucose levels in the experimental diabetic animals.  相似文献   

14.
Interaction of cadmium(II) or zinc(II) acetate with 1,2-bis(4-pyridyl)ethane (bpe) in the presence of dioxime(1,2-cyclohexanedionedioxime = NioxH2 or diphenylglyoxime = dpgH2) resulted in three complexes with the compositions [Cd2(CH3COO)4(NioxH2)2(bpe)(H2O)2] (1), [Cd(CH3COO)2(bpe)(H2O)]n (2) and [Zn(CH3COO)2(NioxH2)(bpe)(H2O)]n (3), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, and luminescence spectroscopy. Dioxime-containing binuclear molecule 1 and 1D linear polymer 3 possess moderate luminescence properties, while the dioxime-free 1D polymer 2 demonstrates strong blue luminescence.  相似文献   

15.
The synthesis, thermal behavior, spectroscopic characterization and crystal and molecular structure of a Zn(II) complex containing the pseudo-oxocarbon Croconate Violet (CV2−) dianion, namely K2[Zn(CV)2(H2O)2] · 2H2O are reported. Thermal analysis has shown that the complex structure presents coordination and lattice water molecules. According to vibrational spectroscopy the Croconate Violet dianion is coordinated to Zn(II) center through the vicinal oxygen atoms in a chelating fashion with no involvement of CN moieties. The complex structure has been confirmed by single crystal X-ray diffraction analysis. The dianionic units [Zn(CV)2(H2O)2]2− adopt an slight distorted octahedral geometry in which the metallic center is surrounded by six oxygen atoms. These discrete dianionic units are connected through intermolecular hydrogen bonding giving rise to a supramolecular array extended along the crystallographic a axis.  相似文献   

16.
Two Cd(II) and Zn(II) coordination polymers based on 3,3′,5,5′-azobenzenetetracarboxylic acid (H4abtc): [Cd2(abtc)(H2O)6]·DMF·0.5H2O (1) and [Zn2(abtc)(bpy)(H2O)2]·DMF·H2O (2) are synthesized and structurally characterized. Both 1 and 2 are 2D polymers but interconnected by solvent molecules to generate 3D suprastructures. Solvent expulsion leads to rupture of both structures, but upon re-exposure to the solvent mixture they exhibit remarkable ability to regain the original structure reversibly from the almost amorphous solvent-expelled form. Compounds with such structural flexibility and reversibility are expected to have some useful functionality.  相似文献   

17.
Fundamental issues in zinc biology are how proteins control the concentrations of free Zn(II) ions and how tightly they interact with them. Since, basically, the Zn(II) stability constants of only two cytosolic zinc enzymes, carbonic anhydrase and superoxide dismutase, have been reported, the affinity for Zn(II) of another zinc enzyme, sorbitol dehydrogenase (SDH), was determined. Its log K is 11.2 +/- 0.1, which is similar to the log K values of carbonic anhydrase and superoxide dismutase despite considerable differences in the coordination environments of Zn(II) in these enzymes. Protein tyrosine phosphatase 1B (PTP 1B), on the other hand, is not classified as a zinc enzyme but is strongly inhibited by Zn(II), with log K = 7.8 +/- 0.1. In order to test whether or not metallothionein (MT) can serve as a source for Zn(II) ions, it was used to control free Zn(II) ion concentrations. MT makes Zn(II) available for both PTP 1B and the apoform of SDH. However, whether or not Zn(II) ions are indeed available for interaction with these enzymes depends on the thionein (T) to MT ratio and the redox poise. At ratios [T/(MT + T) = 0.08-0.31] prevailing in tissues and cells, picomolar concentrations of free Zn(II) are available from MT for reconstituting apoenzymes with Zn(II). Under conditions of decreased ratios, nanomolar concentrations of free Zn(II) become available and affect enzymes that are not zinc metalloenzymes. The match between the Zn(II) buffering capacity of MT and the Zn(II) affinity of proteins suggests a function of MT in controlling cellular Zn(II) availability.  相似文献   

18.
In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV–Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (Kb = 1.4 × 104 M?1) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 ?4.8 × 104 M?1. CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.  相似文献   

19.
Two macrocycles (1 and 2) are prepared that incorporate pendent groups in macrocycle 3 (3=1-oxa-4,7,10-triazacyclododecane) with the goal of studying the effect of these pendent groups on metal ion complexation, solution chemistry and catalysis. Zn(1) contains a macrocyclic ligand with a pendent acridine group and Zn(2) has an appended methyl group. Water ligand pK(a) values for Zn(1) (6.7) and Zn(2) (7.3) are lower than that of Zn(3) (7.7). Zn(II) complexes of 1 and 2 are studied as catalysts for the cleavage of 2-hydroxypropyl 4-nitrophenylphosphate (HpPNP), an RNA analog. Zn(2) has a lower catalytic activity over the pH range 7-10 for cleavage of HpPNP compared to the parent macrocyclic complex, Zn(3). In contrast, Zn(1) has a threefold larger rate constant at pH 7.0 compared to Zn(2), attributed to the presence of a catalytic species which has a protonated acridine amino group. The binding constant of 1.5mM at pH 8.0 for formation of the Zn(2)-uridine adduct is similar to that for Zn(3), suggesting that N-alkylation of the macrocyclic ligand does not interfere with binding of the Zn(II) complex to uridine groups. Binding of cytidine to Zn(2) was not detectable under similar conditions up to 25mM nucleoside. Binding experiments under similar conditions could not be carried out for adenosine or guanosine due to their low solubility.  相似文献   

20.
The synthesis, potentiometric studies and photophysical properties of two new polyamine ligands (L1 and L2) possessing the dansyl chromophore were studied in aqueous 0.15 M NaCl. The compounds show the absorption and emissions bands characteristic of the dansylamide fluorophore and both present intramolecular excited state proton transfer at intermediate pH ranges. One of the ligands (L2) strongly coordinates Zn(II) leading to fluorescence quenching. A model compound (L3) of the dansyl moiety was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号