首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W J Murdoch 《Prostaglandins》1989,37(3):331-334
The antiinflammatory steroid, prednisolone, was administered to sheep during the preovulatory period. The drug did not produce a blockade of follicular rupture. However, prednisolone negated a rise in production of prostaglandin (PG) F2 alpha characteristic of preovulatory follicles. Indomethacin, a nonsteroidal antiinflammatory agent, was 100% effective in preventing ovulation. Levels of PGF2 alpha within follicular tissue were very low following treatment with indomethacin. These findings indicate that ovulation can occur in the absence of a preovulatory elevation in follicular accumulation of PGF2 alpha. Potency of antiinflammatory drugs as inhibitors of ovulation appears to hinge upon their ability to cause a marked suppression in follicular synthesis of prostaglandins.  相似文献   

2.
Interrelationships between production of progesterone (P4), prostaglandin (PG) E2 and PGF2 alpha, and collagenase by periovulatory ovine follicles and their possible involvements in the ovulatory process were investigated. Follicles were isolated from ovaries at intervals (0 to 24 h) after the initiation of the preovulatory surge of luteinizing hormone (LH). Progesterone and PGs within follicles were determined by radioimmunoassay. Digestion of radioactive collagen during coincubation with tissue homogenates was used to assess the production of a bioactive follicular collagenase(s). Follicular accumulation of PGs and P4 increased at 12 and 16 h, respectively, after the onset of the surge of LH; PGE2 then decreased at 20 h. Collagenolytic activity of follicular tissue increased at 20 h and was maximal at 24 h (during the time of follicular rupture). An inhibitor of synthesis of P4 (isoxazol) or PGs (indomethacin) was injected into the follicular antrum at 8 h. Isoxazol did not prevent the initial rise in PGs, but inhibited synthesis of PGF2 alpha at 16 h and therafter. Isoxazol negated the decline in PGE2 and increase in collagenolysis. Indomethacin did not influence synthesis of P4; however, it suppressed collagenolytic activity of follicular tissue. Ovaries with treated follicles were left in situ and observed for an ovulation point at 30 h. Isoxazol or indomethacin was a potent inhibitor of ovulation. The blockade of ovulation by isoxazol was reversed by systemic administration of P4 or PGF2 alpha, but not by PGE2. Reversal of the blockade by indomethacin was accomplished with PGE2 or PGF2 alpha. Collagenolytic activity of follicular tissue was likewise restored by such treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We cultured phagocytic cells derived from the thymic reticulum in order to study the regulation of prostaglandin (PG) production by antiinflammatory or immunostimulating agents. The kinetics of PGE2, 6-keto-PGF1 alpha and PGF2 alpha production were measured by specific radioimmunoassays of the supernatants harvested from cells treated with dexamethasone, a steroidal antiinflammatory drug and by two non steroidal inhibitors (indomethacin and sulindac) or by various immunostimulating agents, one of them, RU 41740 is currently being used in humans. Our results revealed that each of these drugs exerts a differential effect on the PG production, with a striking action on PGE2 synthesis, a lesser effect on 6-keto-PGF1 alpha production and almost no effect on PGF2 alpha synthesis. The possible mechanisms responsible for this complex regulation of PG production are discussed.  相似文献   

4.
In the past two decades there have been innumerable reports that prostaglandins (PGs) are essential for mammalian ovulation. However, we have recently found that a relatively low dose of 0.03 mg indomethacin (INDO) sc to PMSG/hCG-primed immature Wistar rats can significantly reduce ovarian PG levels without inhibiting the control ovulation rate of 60+ ova/rat (1-3). In view of this information, the present study was an effort to duplicate the earlier reports that PGs can reverse the "inhibitory" effect of INDO on ovulation. In control animals, which received PMSG and hCG only, the ovulation rate was 63.8 +/- 4.5 ova/rat. This rate was reduced to 4.1 +/- 1.1 ova/rat when the animals were injected with 1.0 mg INDO at 3 h after hCG. In no instance was this inhibition reversed when the animals were treated with 1.0 mg of PGE2 or PGF2 alpha, or a combination of both prostanoids in either a single dose at 3 h after hCG, or in 4x doses at 2-h intervals beginning at 3 h after hCG. Furthermore, in animals that did not receive INDO, the ovulation rate in PGE2-treated animals was reduced to 20.0 +/- 6.7 ova/rat, and in animals treated with PGE2 and PGF2 alpha (combined) it was reduced to 19.4 +/- 6.5 ova/rat. In summary, not only did the PGs fail to reverse the anti-ovulatory effect of INDO, PGE2 actually suppressed the ovulation rate.  相似文献   

5.
The antiinflammatory agent, indomethacin, inhibits ovulation in mammals by interfering with the synthesis of prostaglandins in preovulatory follicles. To determine the optimum time to administer this inhibitor, indomethacin was given at specific intervals from 10 h before, and up to 9 h after, the ovulatory process had been initiated by hCG (50 I.U./kg). The drug dosage ranged from 1.25 mg/kg to 40 mg/kg. The optimum time to give indomethacin was at 7–8 h after hCG (i.e., 2–3 h before expected rupture of the follicle) at which time the minimum effective dose was 2.5 mg/kg. Since a significant elevation in prostaglandin synthesis occurs as early as 3–5 h after hCG stimulation of rabbit follicles (1), these results reveal that nonsteroidal antiinflammatory agents can interrupt the ovulatory process even the follicle has begun producing substantial amounts of prostaglandins. The data suggest that prostaglandins need to be produced continuouly in the follicle up to the time of actual rupture, or else that indomethacin is interfering with some other aspect of the ovulatory process which transpires after the elevation of prostaglandins.  相似文献   

6.
It has become popular to use the gonadotropin-primed immature rat to study ovulation. The ovarian content of progesterone, estradiol, PGE2, PGF2 alpha, and 6-keto-PGF1 alpha during the ovulatory process was determined in this model. Also, the effect of three anti-ovulatory agents on the ovarian levels of the above substances was determined. At 23 days of age, Wistar rats were primed with pregnant mares serum gonadotropin (PMSG) sc, and two days later the ovulatory process was initiated with human chorionic gonadotropin (hCG) sc. The ovarian follicles began rupturing 12 h later. Ovaries were assayed for the two steroids and prostanoids at 2-h intervals before and several 4-h intervals after ovulation. The ovarian estradiol level increased slightly between 0 and 2 h after hCG, while the progesterone level increased sharply between 2 and 4 h after hCG--at a time when the estradiol declined markedly. All three prostanoids increased concomitantly with progesterone. When the PG synthesis was blocked by indomethacin treatment at 1 h before hCG, ovarian progesterone levels still increased. In contrast, when steroidogenic activity was inhibited by aminoglutethimide, the ovarian prostanoid levels also decreased. Cycloheximide had little effect on the steroids and prostanoids. It is concluded that ovarian prostanoid synthesis might be influenced by ovarian steroid output.  相似文献   

7.

Background

Turkey reproduction is by artificial insemination using pooled semen so there is interest in storing semen. Fertilizing capacity declines after six hours storage, possibly due to poor sperm mobility. Prostaglandins (PG) affect mammalian sperm motility, but avian sperm has not been widely studied. For this study, levels of PG E1, E2, and F2 alpha in turkey seminal plasma and sperm extract, and effects of cyclooxygenase (COX) inhibitors on sperm mobility were determined.

Methods

Seminal Plasma and sperm extract PG E1, E2, and F2 alpha, from 1.0 mL pooled semen, were measured by ELISA. In Trial 1, PG were determined from 122 wk old toms (n = 4). Trial 2 used 36 wk old toms (n = 7). For Trial 3, PGE2 only was measured from 48 wk (n = 6) and 154 wk old toms (n = 3). The effects of non-specific COX inhibitors indomethacin, diclofenac, tolmetin, or aspirin (n = 10), or specific COX-1 or COX-2 inhibitors (n = 3) on sperm mobility were measured (Accudenz swim-down test).

Results

Seminal plasma PG (pg/mL) in Trials 1 and 2, respectively, were 185.2 ± 88.4 and 187.2 ± 33.7 for PGE1; 141.4 ± 43.1 and 100.4 ± 14.6 for PGF2 alpha; and 431.0 ± 155.1 for PGE2 (Trial 1 only). Sperm extract PG (pg/10 billion cells) in Trials 1 and 2, respectively, were 215.1 ± 38.1 and 208.9 ± 41.5 for PGE1; 133.7 ± 51.7 and 49.8 ± 8.3 for PGF2 alpha; and 52.3 ± 8.6 for PGE2 (Trial 1 only). In Trial 3, seminal plasma PGE2 (pg/mL) in older versus younger males was 1097.9 ± 99.3 versus 853.2 ± 144.6 and sperm extract PGE2 (pg/10 billion cells) was 208.0 ± 56.1 versus 102.4 ± 14.8. Cyclooxygenase inhibitors (0.001 to 10 mM) decreased sperm mobility: indomethacin 15 to 100%; diclofenac 4 to 100%; tolmetin 27 to 74%; aspirin (tested at 0.01 to 15 mM) 22 to 42%; resveratrol (COX-1) and NS-398 (COX-2), both tested at 0.1 to 10 mM, 38 to 98% and 44 to 85%, respectively.

Conclusion

These results indicate that PG are present in turkey seminal plasma and sperm, and COX inhibitors decrease turkey sperm mobility.  相似文献   

8.
In previous studies we have demonstrated that prior to hCG induced ovulation the levels of PGF and PGE in rabbit Graafian follicles increase markedly as ovulation approaches. We have now extended the study to include follicles obtained from animals at ovulation time and up to 48 hours after hCG injection. We have found that PGF reaches a maximum in ovulated follicles at the time of ovulation and then quickly decreases, whereas PGE continues to rise for several hours and then declines. The increase in both prostaglandins is limited to the follicles that actually ovulate. These data further document the proposed role for prostaglandins in the ovulatory process.  相似文献   

9.
The effects of hydrogen peroxide (H2O2) and sodium orthovanadate (Na3VO4) on ovulation and prostaglandin (PG) production were investigated in goldfish (Carassius auratus) follicles. H2O2, at levels that did not stimulate ovulation, significantly increased the ability of Na3VO4 to induce ovulation. The enhancing effect of H2O2 on Na3VO4-induced (10 microM) ovulation was observed over a wide range of concentrations (0.3-19.2 ppm) but was maximal at 1.2-4.8 ppm. The H2O2 effect on ovulation diminished at concentrations greater than 4.8 ppm. Na3VO4 and H2O2 also stimulated prostaglandin E (PGE) and prostaglandin F (PGF) levels in incubates. An interactive effect of the two agents was significant only on PGE production. However, optimal H2O2/Na3VO4 concentrations for the stimulation of PG production were much higher than those for stimulating ovulation. In most incubations, Na3VO4-induced or Na3VO4/H2O2-induced ovulation was not inhibited by the cyclooxygenase inhibitor indomethacin (IM), but was blocked by the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA). Treatment of an Na3VO4/H2O2 mixture with catalase before the start of incubation totally abolished the enhancing effect of H2O2 on ovulation. This suggests that the enhancing effect of H2O2 on ovulation may not be a result of a chemical metabolite(s) produced by the two agents in mixture but rather is due to some direct effect of H2O2. This may have physiological significance in light of the published effects of H2O2 on various processes known to be involved in ovulation.  相似文献   

10.
It is well recognized that prostaglandins of the E (PGE) and F (PGF) series play an important role in ovarian physiology; in addition, nitric oxide (NO) has been recently demonstrated to be an important mediator of granulosa cell function. There is now evidence for a biologic relationship between PGs and the NO biosynthetic pathway. The aim of this study was to investigate the relationship between NO and PGE2 and PGF2alpha in bovine granulosa cells. Granulosa cells collected from small (<5mm) and large (>8mm) follicles were treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) or with indomethacin, an inhibitor of PGs synthesis, and PGE2 and PGF2alpha were quantified; in addition, the effects of PGE2 PGF2alpha and indomethacin on steroidogenesis and NO production were determined. The highest concentration of SNAP inhibited (P < 0.001) PGE2 production in cells from both kinds of follicles, while the lowest dose was effective only in cells from small follicles. The highest concentration of SNAP inhibited and stimulated (P < 0.001) PGF2alpha production in cells from small and large follicles, respectively. Progesterone (P4) production was stimulated by PGE2 and inhibited by PGF2alpha (P < 0.001) in cells from both types of follicles. Estradiol 17beta (E2) secretion was inhibited in cells from small and stimulated in those from large follicles by PGE2 (P < 0.05), while PGF2alpha was stimulatory in cells from both kinds of follicles (P < 0.001). P4 production by cells from small follicles was inhibited and stimulated by those from large follicles by indomethacin (P < 0.001), which also increased E2 output in cells from small follicles (P < 0.001). NO production was inhibited by both PGE2 and PGF2alpha except at the lowest concentration, which was stimulatory (P < 0.001). Indomethacin stimulated (P < 0.001) NO production. Taken together, the present data suggest a cross-talk between NO and PGs biosynthetic pathways, which needs to be further clarified.  相似文献   

11.
Cycloheximide (5 mg/kg, i.v.) significantly inhibited ovulation in the rabbit when it was administered as early as 20 h before the ovulation process was initiated by hCG, and as late as 1 h after hCG. The ovulation rate was significantly reduced, but follicular biosynthesis of prostaglandins E and F was only partly inhibited. The biosynthesis of progesterone and oestradiol in follicles during the early stages of the ovulation process was also inhibited. Cycloheximide may therefore inhibit ovulation by a mechanism which is different from the action of indomethacin, and this mechanism may involve the suppression of ovarian steroidogenesis.  相似文献   

12.
A few recent investigations have indicated that it is possible for mammalian ovulation to progress to completion in the absence of a preovulatory rise in ovarian prostanoid production and that the antiovulatory mode of action of antiinflammatory agents (e.g., indomethacin) could be independent of their ability to inhibit the cyclooxygenase pathway of arachidonate metabolism. Mature ewes were treated during the preovulatory period with a systemic dosage of indomethacin that either consistently did (500 mg) or did not (100 mg) prevent follicular rupture. With both dosages, the rise in follicular production of prostaglandin F2 alpha following the surge in secretion of LH was negated. Indomethacin did not affect periovulatory patterns of change in follicular tissue concentrations of estradiol-17 beta, testosterone, or progesterone. The 500-mg dose of indomethacin inhibited collagen breakdown within the follicular wall as deduced from measurement of tissue levels of hydroxyproline. In vitro secretion of a follicular leukotactic agent and accumulation of extravascular white blood cells within the theca interna of periovulatory follicles were also suppressed by the ovulation-inhibiting dose of indomethacin. It appears that the blockage of ovulation induced by indomethacin in the sheep is largely unrelated to its capacity to suppress follicular prostaglandin biosynthesis; rather, it is more directly associated with effects on follicular collagenolysis and leukocyte chemoattraction.  相似文献   

13.
Prepubertal gilts were treated with 750 IU pregnant mare's serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa cells (GC) and theca interna cells (TC) from follicles of gilts 72 h (GC-72 and TC-72, respectively) and 108 h (GC-108 and TC-108 h, respectively) after PMSG treatment were cultured for 0, 12, 24, and 36 h in medium with or without luteinizing hormone (LH), dibutyryl cyclic adenosine 3',5'-monophosphate [Bu)2cAMP), calcium ionophore (A23187), and/or arachidonic acid (AA), and the production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. TC-72 was the principal source of PGs 72 h after PMSG. At 108 h, the production of PGE and PGF by GC was increased 10- and 30-fold, respectively, whereas corresponding increases by TC were 2-fold. LH and A23187 significantly stimulated PGE and PGF production by both GC-72 and TC-72, but only thecal PG production was stimulated by (Bu)2cAMP. LH had minimal or no effect on PG production by GC-108 and TC-108, but A23187 (GC-108, TC-108) and (Bu)2cAMP (TC-108) were stimulatory. Basal PG production by GC-72, GC-108, and TC-108 was stimulated by AA. However, production by GC and TC cultured in medium containing AA and LH, A23187, or (Bu)2cAMP was not different from that produced by AA alone. These findings suggested that GC and TC can synthesize PGs in vitro, but AA availability is rate-limiting in GC. After exposure to hCG in vivo, the capacity of both cell types to produce PGs is increased but is limited by AA availability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The plasminogen activator/plasmin synthetic substrate S-2251 was used to measure the effect of indomethacin, cycloheximide, colchicine, dexamethasone, tranexamic acid, and aprotinin on the elevation of ovarian plasminogen activator (PA) that normally occurs during ovulation in the rat. Young Wistar rats were weaned on the morning of Day 21, given 4.0 IU of pregnant mare's serum gonadotropin (PMSG) s.c. at 0800 h on Day 22, and given 10.0 IU of human chorionic gonadotropin (hCG) on Day 24. These animals normally began ovulating between 0000 and 0200 h on Day 25. The induced ovulation rate was 11.5 +/- 2.2 ova/rat, based on the number of ova in the oviducts of control animals at 0900 h on Day 25. In the controls, PA activity in extracts of homogenized ovaries increased 3-fold from 0.125 +/- 0.010 OD units just before the administration of hCG to 0.371 +/- 0.021 at 12 h after hCG, i.e., near the time of ovulation. Indomethacin, in doses of 0.1-1.0 mg/rat, inhibited ovulation but did not inhibit the normal increase in PA activity, whereas indomethacin at the high dose of 10.0 mg/rat inhibited both ovulation and PA activity. Cycloheximide, at a dose of 0.1 mg/rat, was given at 12 h before hCG, immediately after hCG, and at 9 h after hCG. This agent inhibited ovulation most effectively when given at 12 h before hCG, yet it inhibited PA activity most effectively when given immediately after or at 9 h after hCG. Colchicine, at a dose of 0.1 mg/rat, inhibited ovulation, but not PA activity, when it was given 1 h before hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Prepubertal gilts were treated with 750 IU pregnant mares' serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa (GC) and theca interna (TIC) cells were prepared by microdissection and enzymatic digestion from follicles obtained 36, 72 and 108 h after PMSG treatment and incubated for up to 6 h in a chemically defined medium in the presence or absence of arachidonic acid, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and indomethacin. Production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. Both GC and TIC had the capacity to produce prostaglandins, with production by each cell type increasing markedly with follicular maturation. PGE was the major prostaglandin produced by both cellular compartments. Only PGE production by GC was consistently enhanced by addition of arachidonic acid to the incubation medium. Neither cell type was responsive to FSH and LH in vitro. Indomethacin inhibited the production of PGE and PGF by both cell types. These results provide convincing evidence for an intrafollicular source of prostaglandins and indicate that both cellular compartments contribute significantly to the increased production of prostaglandins associated with follicular rupture.  相似文献   

16.
Murine peritoneal macrophages (M phi), activated in vivo or in vitro, remarkably inhibited the uptake of thymidine by a lens epithelial cell line, while resident M phi, or M phi induced by thioglycollate, exhibited much lower or no cytostatic capacity. The target cells were partially protected from the cytostatic activity by the anti-inflammatory agents indomethacin, aspirin, and dexamethasone, but not by lipoxygenase inhibitors. The protective activity of indomethacin and aspirin, but not of dexamethasone, was completely counteracted by prostaglandin E2 (PGE2). Yet, PGE2 alone has no effect on the uptake of [3H]thymidine by lens epithelial cells. PGE1 resembled PGE2 in its effect on this system, whereas PGA2, PGB2, or PGF2 alpha had no detectable activity. The counteracting effect of PGE2 was mimicked by dibutyryl cAMP or by cholera toxin, an agent which increases cAMP levels. These findings suggest that PGEs are not direct cytostatic agents, but rather, are essential mediators for the development of the cytostasis. Activated M phi did not lyse cells of the original lens epithelial cell line, but caused substantial cytolysis of cells of a subline derived from it. In contrast to its aforementioned effect on the cytostasis, PGE2 inhibited the cytolytic activity of M phi. Thus, this study provides a first demonstration in a single system of the opposite effects of PGEs on M phi activity on target cells, i.e., mediating the cytostasis and inhibiting the cytolysis.  相似文献   

17.
The radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF2alpha in urine of humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF2alpha specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF2alpha was determined by a specific antibody to PGF2alpha. Basal excretion of PGE2 and of PGF2alpha in healthy women on free diet was 9.3 ng/hour+/-0.98 and 18.3 ng/hour +/- 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF2alpha in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGF2alpha increased markedly from 46.2 pg/min +/- 9.3 and 27+/- 3.4 to 253.8 +/- 43.3 and 108 +/- 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

18.
Formation of prostaglandins by ovarian carcinomas   总被引:1,自引:0,他引:1  
Tissue contents of prostaglandins (PG) PGE2, PGE2a and 6-keto-PGF1a (degradation product of PGI2) were determined in specimens of advanced human ovarian cancer (n = 11). The PG levels (ng/mg tissue protein) varied widley: PGE2 17-515; PGF2a 2-43 and 6-keto-PGF1a 5-105. Tumors of patients without response to chemotherapy contained more PGE2, PGF2a and 6-keto-PGF1a than did tumors responding to chemotherapy. PG production was investigated in two ovarian carcinoma-derived cell lines. The ability of these cells to synthesize PG varied depending on the cell density. An increase of cell number was associated with a decrease of PG yield. PG formation was inhibited by indomethacin in a concentration-dependent manner. The present study suggests that ovarian carcinoma cells form PG in vivo and vitro.  相似文献   

19.
It has been demonstrated on isolated guinea-pig ileum and rats that nonsteroid antiinflammatory drugs (acetylsalicylic acid, ibuprofen, diclofenac sodium, butadione, and indomethacin) antagonized spasmogenic and inflammatory effects of sodium arachidonate, but not of other mediators of inflammation such as histamine, serotonin, bradykinin and PGE2. "Antiarachidonic" potency of nonsteroid antiinflammatory drugs correlated well with their antiinflammatory activity and their ability to inhibit endogenous PG biosynthesis. This method determining the antagonism to arachidonic acid effects in simple in vitro and in vivo models can be useful for screening nonsteroid antiinflammatory drug potential.  相似文献   

20.
The preovulatory LH surge induces a remarkable increase in ovarian prostaglandins (PGs) which help to mediate the ovulatory process. We investigated whether cytosolic phospholipase A2 (cPLA2) has a role in this PG production in PMSG/hCG-primed immature rats. The immunoreactive signal for cPLA2 was localized in both thecal and granulosa layers of mature follicles and became evident in response to gonadotropins. The PLA2 activity in the whole ovarian cytosol rose slightly after PMSG stimulation, persisted relatively constant until 24 h after hCG injection and thereafter increased gradually. Intra-ovarian bursal injection of arachidonyl trifluoromethyl ketone, a specific inhibitor for cPLA2 ( 1.0-3.0 mg/ovary), significantly reduced ovarian PGE2 content and the ovulation rate. These results suggest that cPLA2 exists in periovulatory follicles and functions in PG production related to the ovulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号