首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although it has been long presumed that population genetic variability should decrease as a species' range margin is approached, results of empirical investigations remain ambiguous. Sampling strategies employed by many of these studies have not adequately sampled the entire range. Here we present the results of an investigation of population genetic diversity in a vertebrate species, the Italian agile frog, Rana latastei, sampled comprehensively across its entire range. Our results show that genetic variability is not correlated with population location with respect to the range periphery. Instead, the model that best explains the genetic variation detectable across the range is based on an east-to-west gradient of declining diversity. Although we cannot state definitively what has led to this distribution, the most likely explanation is that the range of Rana latastei expanded postglacially from a Balkan refugium.  相似文献   

2.
Aim We examined the range contraction of 309 declining species of animals and plants to determine if the contraction dynamics better matched predictions based on the demographic characteristics of historical populations (demographic hypothesis) or based on the contagion‐like spread of extinction forces (contagion hypothesis). Location Species included in the analysis came from all biogeographic regions. Methods We obtained range maps for 309 species from literature or through personal correspondence with authorities. Hypotheses were contrasted by examining the sequence of changes in the proportion (C) of the remnant range that fell within the central region of the historical range. Monte Carlo simulations and polynomial regressions were employed to examine changes in C during the process of range contraction. Results The results of the Monte Carlo simulations indicated that more species had observed range contractions consistent with the contagion hypothesis than expected by chance (z‐score = 2.922, P = 0.002). The Monte Carlo analysis also indicated that the number of species whose observed range contractions were consistent with the demographic hypothesis was no greater than expected by chance (z‐score = 0.337, P = 0.367). The results of the polynomial regression analysis for the two most common taxonomic groups (mammals and birds) and for all geographical regions (Australia, Africa, Eurasia, and North America) we examined also supported the contagion hypothesis. Main conclusions Most of the examined range contractions are consistent with the contagion hypothesis and that the most likely contagion is human related disturbance. These results have important implications for the conservation of endangered species.  相似文献   

3.
为从分子水平探索不同地区伞裙追寄蝇种群间的内在联系,本文利用ISSR分子标记技术对8个不同地区伞裙追寄蝇自然种群进行遗传多样性、种群间分化程度以及聚类分析等研究。结果表明:筛选出11对多态性稳定的ISSR引物,对8个地区伞裙追寄蝇群体的80个个体进行PCR扩增,共获得166个重复性好且清晰可辨的ISSR条带,平均每条引物扩增出15.0909个片段,且均为多态性条带,多态信息含量(PIC)为0.8441-0.8653;香农信息指数(I)为0.1240-0.3455;Nei's遗传多样性指数(H)为0.0841-0.2285;基因分化率(Gst)为28.78%,基因流(Nm)的均值为1.5702,即遗传变异主要存在于个体之间,不同种群间基因交流处于中等水平;8个地区伞裙追寄蝇种群被划分为4个类群,种群间的遗传分化与地理距离呈正相关关系。  相似文献   

4.
  1. Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.
  2. The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life‐cycles to higher elevations that extend beyond their range limits.
  3. Using over a decade of weekly spring to late‐summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.
  4. We observed that the abundance of dispersing grasshoppers along the gradient declined 4‐fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty‐eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.
  5. The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context‐dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
  相似文献   

5.
AimPredictions of how the geographical ranges of species change implicitly assume that range can be determined without invoking climate change. The aim here was to determine how accurate predictions of range change might be before entertaining global climatic change. LocationWorldwide. MethodsAll the documented global biological control translocations of ladybirds (Coccinellidae: Chilocorus spp.) were analysed with the ecoclimatic program, CLIMEX. This program determines species distributions in relation to climate, and can be used to express the favourableness of different localities for a species. CLIMEX is also a useful exploratory tool for determining the likelihood of establishment of species introduced from one area to another. ResultsPredictive models were developed based on the likelihood of establishment of fifteen Chilocorus spp. relative to their physiological characteristics and climatic tolerances. This likelihood was compared with actual establishment with a resultant range of 0% accuracy to 100% accuracy. Only four (26.7%) species climatic tolerances could the predicted with 100% certainty. The general lack of accurate prediction was because climate is not always the overriding feature determining whether a species will establish or not. Other determinants, such as localized response to microclimate, phenology, host type and availability, presence of natural enemies and hibernation sites play a varying role over and above climate in determining whether a species will establish at a new locality. Main conclusionsThis study shows that even in the absence of climate change, range cannot always be determined, which means that most predictions of range change with climate change are likely to be wrong.  相似文献   

6.
Pattern and process in the geographical ranges of freshwater fishes   总被引:2,自引:0,他引:2  
North American freshwater fishes were studied to determine whether they displayed the same relationships between log (geographical range size) and log (body size) and the same pattern of range shape as found among North American birds and mammals. The forces that produce these patterns were also investigated. The log (geographical range size) : log (body size) relationship was analysed for 121 North American freshwater fish species. Thirty‐two imperilled species were compared with 89 non‐imperilled species to determine if the overall relationship could result from differential extinction. Range geometries were analysed, within and among habitat guilds, to determine if general patterns could be detected. The log (geographical range size) : log (body size) pattern among freshwater fish species was triangular and qualitatively similar to that found for North American birds and mammals. The results suggest that below a minimum geographical range, the likelihood of extinction increases dramatically for freshwater fishes and that this minimum range size increases with body size. The pattern of fish species’ range shapes differs from that found for other North American vertebrate taxa because, on average, fish possess much smaller ranges than terrestrial species and most fish species’ geographical ranges extend further on a north–south axis than on an east–west axis. The log (geographical range size) : log (body size) pattern reveals that fish species’ geographical ranges are more constrained than those of terrestrial species. The triangular relationship may be caused by differential extinction of species with large bodies and small geographical ranges as well as higher speciation rates of small‐bodied fish. The restricted geographical ranges of freshwater fishes gives them much in common with terrestrial species on oceanic islands. Range shape patterns within habitat guilds reflect guild‐specific historical and current ecological forces. The overall pattern of range shapes emerges from the combination of ecologically different subunits.  相似文献   

7.
The genetic structure of 31 populations of the German cockroach, Blattella germanica (L.), located in two French cities 900 km apart, was estimated by enzyme gel electrophoresis. A set of 41 loci was analysed. Eight loci (4 Est, 3 Lap and 1 Got) were polymorphic. Diversity was estimated at different geographical levels: the overall population, between cities and within a city. Hierarchical F-statistics indicated significant genetic differentiation between all populations and among populations within each city, but no differentiation between cities. FST values for populations within each city and for the overall sample were substantially dissimilar. In addition, a cluster analysis did not separate populations according to their geographical origin but according to the predominance of either of the two alternative Est-4 alleles. The results of this analysis point to the absence of genetic differentiation on a large geographical scale: no large-scale geographical distance effect was detected. However, we evidenced strong genetic substructuring on a local scale, within cities.  相似文献   

8.
9.
The random amplified polymorphic DNA (RAPD) technique was used to examine genetic divergence and interrelations of 11 geographical populations of the migratory locust in China, and the role of spatial separation in the population differentiations. AMOVA analysis of genetic variations in all the populations indicated greater within- (79.55%) than among-population variability (20.45%), and that there were significant differentiations among the populations; 11 populations were divided into four regional groups, with significantly greater variability within (82.99%) than among the groups (17.01%), and there existed apparent regional differentiations. Paired comparisons showed significantly greater variability within-than between-groups, indicating significant differentiations between populations of different regional groups. Of all the pairwise comparisons, Hainan and Tibetan groups displayed the greatest differentiation, with the difference between the two groups being seven folds of that between populations within the groups; the least differentiations were exhibited between the groups of Hainan, Xinjiang, and Inner Mongolia, with the differences between groups being only half of the differences between populations within the groups. Mantel tests of the genetic and spatial distances showed that the two matrices were significantly correlated (p<0.01), indicating that the geographical isolation played an important role in the differentiations of the geographical populations of the migratory locusts. Cluster analysis divided all populations into four major groups: Xinjiang and Inner Mongolia group, the Great Plains of North China (the Yellow River and Huai River Plains) group, Hainan group, and Tibet group. Principal component analysis (PCA) supported the division of populations based on the cluster analysis. However, analysis of individuals clustered the locusts into five populations: Xinjiang and Inner Mongolia, Hami in Xinjiang, the Great Plains of North China, Hainan, and Tibet. The locust populations in eastern China displayed apparently continous and gradient variations; as such authors consider that there were no necessity and valid reasons for further division of subspecies. The subspecific status for the main geographical populations of the migratory locusts in China was discussed.  相似文献   

10.
The migratory locust, Locusta migratoria L., which is distributed widely in the East Hemisphere, has long been regarded as the most important agricultural pest and a model insect. Its distribution ranges from thetropic and the subtropical zone, to the temperate zone, and to the cold-temperate zone. Because of the wide geographical distribution and adaptations, many geo- graphical populations of the migratory locust dis- played apparent variation in morphology, life history, physiology, and ot…  相似文献   

11.
Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06) and lowest for those from Uzbekistan (0.18 ± 0.17). Likewise, polymorphic information content (PIC) was highest for Pakistan (0.67 ± 0.06) and lowest for Uzbekistan (0.15 ± 0.17). Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group.  相似文献   

12.
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.  相似文献   

13.
14.
缺齿蓑藓(Macromitrium gymnostomum Sull.Lesq.)广布于我国东南部,形态变异较大,与近缘种关系模糊。为了正确鉴定缺齿蓑藓形态变异范围,以及形态、遗传和地理因素三者的关系,对缺齿蓑藓11个地理居群106个样本配子体的13个形态性状进行了测定。结果显示,根据形态数据可将106份样本聚类成8个形态组。用13对ISSR引物获得了150个位点,其中148个为多态位点,多态位点百分率为98.67%; Nei's基因多样性在居群内占62.22%,在居群间占37.78%;居群间基因流(Nm)为0.8235,遗传分化指数(Gst)为0.3778。11个地理居群的遗传距离在0.0873~0.2363之间,平均为0.1508。基于148个多态位点可将106份样本聚成8个遗传组。缺齿蓑藓的形态变异有一定的遗传背景(r=0.159,n=106,P 0.2),地理因素对形态(r=0.309,n=106,P 0.01)和遗传(r=0.251,n=106,P 0.01)分化产生了极显著影响。  相似文献   

15.
16.
Distribution margins constitute areas particularly prone to random and/or adaptive intraspecific differentiation in plants. This trend may be particularly marked in species discontinuously distributed across mountain ranges, where sharp geographic isolation gradients and habitat boundaries will enhance genetic isolation among populations. In this study, we analysed the level of neutral genetic differentiation among populations of the long-lived shrub Daphne laureola (Thymelaeaceae) across the Baetic Ranges, a glacial refugium and biodiversity hotspot in the western Mediterranean Basin. Within this area, core and marginal populations of D. laureola were compared with regard to their spatial isolation, size, genetic diversity and differentiation. A spatially explicit analysis conducted on the vast majority of the species' known populations in the study area (N = 111) showed that marginal populations (western and eastern) present larger spatial isolation than core populations, but are not smaller. We compared genetic diversity and differentiation between core and marginal populations using a subsample of 15 populations and 225 amplified fragment length polymorphism (AFLP) markers. Core and marginal populations did not differ in genetic diversity, probably because of the occurrence of large populations on the local margins. Western populations were strongly differentiated from the other populations. In addition, spatial and genetic differentiation among populations was larger on the western margin. Eastern populations constituted a genetically homogeneous group closely related to core populations, despite their greater spatial isolation. Results suggest that studies on phenotypic differentiation between core and marginal populations of D. laureola, and presumably other species having discontinuous distributions across the Baetic ranges, should take into account geographical differences in levels of genetic differentiation between the different distribution borders.  相似文献   

17.
The taxonomy of the genus Leuciscus in the Iberian Peninsula has been presented on the basis of morphological analysis. Two species are believed to occur in Portuguese inland waters, L. carolitertii , the northern basins chub, and L. pyrenaicus , which was described for the Tejo and southern basins. Since only slight differences in the meristic and morphometric characters are observed, the distinction between the two species has been made previously mainly on the basis of osteology. In order to investigate the patterns of genetic differentiation between these species, 24 sites were sampled for both species, and examined electrophoretically for the study of variation at 27 presumptive loci. The results pointed to different levels of population differentiation among drainages and support the recognition of the species level for L. pyrenaicus and L. carolitertii. Our results also suggested that the distribution area of L. pyrenaicus is probably restricted to Tejo and to the small drainages near Tejo, while L. carolitertii seems to have a widespread distribution area, including Lima, Douro, Vouga, Mondego, Guadina and Sado drainages. Moreover, concerning the southern populations, Mira and Arade, the surprisingly high level of differentiation observed at several loci, supports the existence of a further species occurring in these small drainages. The evolutionary aspects related to that differentiation are discussed.  相似文献   

18.
四种松毛虫不同地理种群遗传多样性的等位酶分析   总被引:3,自引:0,他引:3  
【目的】采用等位酶电泳技术对中国松毛虫属Dendrolimus 4种共9个地理种群进行遗传多样性和遗传分化研究。【方法】对6种等位酶系统乳酸脱氢酶(LDH)、苹果酸脱氢酶(MDH)、苹果酸酶(ME)、乙醇脱氢酶(ADH)、甲酸脱氢酶(FDH)、谷氨酸脱氢酶(GDH)进行聚丙烯酰胺凝胶电泳分析。【结果】在4种松毛虫9个地理居群中共检测到10个基因位点,其中4个位点为多态位点,检测到17个等位基因; 种群总体水平多态位点比率P=40%,平均有效基因数A=1.700,平均期望杂合度He=0.151,种群平均遗传距离为0.001~0.285; 其中马尾松毛虫指名亚种Dendrolimu punctatus Walker 6个居群的遗传分化度Fst=0.265,基因流Nm=0.692。4种松毛虫之间遗传关系最近的是落叶松毛虫D. superans Butler和马尾松毛虫的地理亚种赤松毛虫D. punctatus spectabilis Butler,遗传关系最远的是落叶松毛虫D. superans Butler和云南松毛虫D. houi Lajonquiere。【结论】 马尾松毛虫居群间遗传分化程度较大,基因交流较少,遗传漂变已经成为导致该物种种群分化的主要原因之一;遗传距离与地理距离存在一定相关性。  相似文献   

19.
Every species occupies a limited geographic area, but it remains unclear why traits that limit distribution do not evolve to allow range expansion. Hypotheses for the evolutionary stability of geographic ranges assume that species are maladapted at the range boundary and unfit beyond the current range, but this assumption has rarely been tested. To examine how fitness varies across species' ranges, we reciprocally transplanted two species of monkeyflowers, Mimulus cardinalis and M. lewisii, within and beyond their present elevation ranges. We used individuals of known parentage from populations collected across the elevation ranges of both species to examine whether populations are adapted to position within the range. For both species we found the greatest average fitness at elevations central within the range, reduced fitness at the range margin, and zero or near-zero fitness when transplanted beyond their present elevation range limits. However, the underlying causes of fitness variation differed between the species. At high elevations beyond its range, M. cardinalis displayed reduced growth and fecundity, whereas at low elevations M. lewisii experienced high mortality. Weak differences in performance were observed among populations within each species and these were not related to elevation of origin. Low fitness of both species at their range margin and weak differentiation among populations within each species suggest that adaptation to the environment at and beyond the range margin is hindered, illustrating that range margins provide an interesting system in which to study limits to adaptation.  相似文献   

20.
Qinfeng Guo 《Molecular ecology》2012,21(22):5396-5403
The genetic variation across a species’ range is an important factor in speciation and conservation, yet searching for general patterns and underlying causes remains challenging. While the majority of comparisons between central and marginal populations have revealed a general central–marginal (C–M) decline in genetic diversity, others show no clear pattern. Similarly, most latitudinal studies (although much fewer, especially those conducted rangewide) also showed latitudinal trends in genetic variation. To date, the C–M and latitudinal patterns have often been examined independently and have rarely been considered together when accounting for the observed genetic variation across species ranges. Here, in the light of the most recent findings, I show how latitude might be responsible for some of the deviations from the general C–M trends in genetic diversity, and vice versa. In the future, integrating latitude and range geometry with climate‐induced species migration would offer important insights into conservation prioritization across species ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号