共查询到20条相似文献,搜索用时 0 毫秒
1.
The competitive inhibition constants of series of inhibitors related to phenylacetic acid against both wild-type and the doubly mutanted C298A/W219Y aldose reductase have been measured. Van't Hoff analysis shows that these acids bind with an enthalpy near -6.8 kcal/mol derived from the electrostatic interactions, while the 100-fold differences in binding affinity appear to be largely due to entropic factors that result from differences in conformational freedom in the unbound state. These temperature studies also point out the difference between substrate and inhibitor binding. X-ray crystallographic analysis of a few of these inhibitor complexes both confirms the importance of a previously described anion binding site and reveals the hydrophobic nature of the primary binding site and its general plasticity. Based on these results, N-glycylthiosuccinimides were synthesized to demonstrate their potential in studies that probe distal binding sites. Reduced alpha-lipoic acid, an anti-oxidant and therapeutic for diabetic complications, was shown to bind aldose reductase with a binding constant of 1 microM. 相似文献
2.
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was identified as a biomarker of lung cancer, exhibiting high sequence identity with human aldose reductase (AKR1B1). Using recombinant AKR1B10 and AKR1B1, we compared their substrate specificity for biogenic compounds and inhibition by endogenous compounds and found the following unique features of AKR1B10. AKR1B10 efficiently reduced long-chain aliphatic aldehydes including farnesal and geranylgeranial, which are generated from degradation of prenylated proteins and metabolism of farnesol and geranylgeraniol derived from the mevalonate pathway. The enzyme oxidized aliphatic and aromatic alcohols including 20α-hydroxysteroids. In addition, AKR1B10 was inhibited by steroid hormones, bile acids and their metabolites, showing IC 50 values of 0.03-25 μM. Kinetic analyses of the alcohol oxidation and inhibition by the steroids and tolrestat, together with the docked model of AKR1B10-inhibitor complex, suggest that the inhibitory steroids and tolrestat bind to overlapping sites within the active site of the enzyme-coenzyme complex. Thus, we propose a novel role of AKR1B10 in controlling isoprenoid homeostasis that is important in cholesterol synthesis and cell proliferation through salvaging isoprenoid alcohols, as well as its metabolic regulation by endogenous steroids. 相似文献
3.
The singnificance of the zinc hydroxide–Thr-199–Glu-106 hydrogen-bond network in the active site of human carbonic anhydrase II has been examined by X-ray crystallographic analyses of site-specific mutants. Mutants with Ala-199 and Ala-106 or Gln-106 have low catalytic activities, while a mutant with Asp-106 has almost full CO 2 hydration activity. The structures of these four mutants, as well as that of the bicarbonate complex of the mutant with Ala-199, have been determined at 1.7 to 2.2 Å resolution. Removal of the γ atoms of residue 199 leads to distorted tetrahedral geometry at the zine ion, and a catalytically important zinc-bound water molecule has moved towards Glu-106. In the bicarbonate complex of the mutant with Ala-199 one oxygen atom from bicarbonate binds to zinc without displacing this water molecule. Tetrahedral coordination geometries are retained in the mutants at position 106. The mutants with Ala-106 and Gln-106 have a zinc-bound sulfate ion, whereas this sulfate site is only partially occupied in the mutant with Asp-106. The hydrogen-bond network seems to be “reversed” in the mutants with Ala-106 and Gln-106. The network is preserved as in native enzyme in the mutant with Asp-106 but the side chain of Asp-106 is more extended than that of Glu-106 in the native enzyme. These results illustrate the importance of Glu-106 and Thr-199 for controlling the precise coordination geometry of the zinc ion and its ligand preferences with results in an optimal orientation of a zine-bound hydroxide ion for an attack on the CO 2 substrate. © 1993 Wiley-Liss, Inc. 相似文献
4.
Neuropilins (Nrps) are co-receptors for class 3 semaphorins and vascular endothelial growth factors and important for the development of the nervous system and the vasculature. The extracellular portion of Nrp is composed of two domains that are essential for semaphorin binding (a1a2), two domains necessary for VEGF binding (b1b2), and one domain critical for receptor dimerization (c). We report several crystal structures of Nrp1 and Nrp2 fragments alone and in complex with antibodies that selectively block either semaphorin or vascular endothelial growth factor (VEGF) binding. In these structures, Nrps adopt an unexpected domain arrangement in which the a2, b1, and b2 domains form a tightly packed core that is only loosely connected to the a1 domain. The locations of the antibody epitopes together with in vitro experiments indicate that VEGF and semaphorin do not directly compete for Nrp binding. Based upon our structural and functional data, we propose possible models for ligand binding to neuropilins. 相似文献
5.
Quasi‐elastic light scattering (QELS), electrophoretic light scattering (ELS), CD spectroscopy, and azide binding titrations were used to study the complexation at pH 6.8 between ferrihemoglobin and three polyelectrolytes that varied in charge density and sign. Both QELS and ELS show that the structure of the soluble complex formed between ferrihemoglobin and poly(diallyldimethylammonium chloride) [PDADMAC] varies with protein concentration. At fixed 1.0 mg/mL polyelectrolyte concentration, protein addition increases complex size and decreases complex mobility in a tightly correlated manner. At 1.0 mg/mL or greater protein concentration, a stable complex is formed between one polyelectrolyte chain and many protein molecules (i.e., an intra‐polymer complex) with apparent diameter approximately 2.5 times that of the protein‐free polyelectrolyte. Under conditions of excess polyelectrolyte, each of the three ferrihemoglobin–polyelectrolyte solutions exhibits a single diffusion mode in QELS, which indicates that all protein molecules are complexed. CD spectra suggest little or no structural disruption of ferrihemoglobin upon complexation. Azide binding to the ferrihemoglobin–poly(2‐acrylamide‐2‐methylpropanesulfonate) [PAMPS] complex is substantially altered relative to the polyelectrolyte‐free protein, but minimal change is induced by complexation with an AMPS‐based copolymer of reduced linear charge density. The change in azide binding induced by PDADMAC is intermediate between that of PAMPS and its copolymer. © 1999 John Wiley & Sons, Inc. Biopoly 50: 153–161, 1999 相似文献
6.
We have determined the crystal structure, at 1.4A, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked beta-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap(4)A (both at 1.6A resolution). In the Ap(4)A co-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved. 相似文献
7.
To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. Here, we study the binding process of inhibitors to aldose reductase (ALR2) with respect to changes of the protonation inventory upon complex formation. Knowledge of such processes is a prerequisite to factorize the binding free energy into enthalpic and entropic contributions on an absolute scale. Our isothermal titration calorimetry (ITC) measurements suggest a proton uptake upon complex formation with carboxylate-type inhibitors. As the protonation event will contribute strongly to the enthalpic signal recorded during ITC experiments, knowledge about the proton-accepting and releasing functional groups of the system is of utmost importance. However, this is intricate to retrieve, if, as in the present case, both, binding site and ligand possess several titratable groups. Here, we present pKa calculations complemented by mutagenesis and thermodynamic measurements suggesting a tyrosine residue located in the catalytic site (Tyr48) as a likely candidate to act as proton acceptor upon inhibitor binding, as it occurs deprotonated to a remarkable extent if only the cofactor NADP+ is bound. We furthermore provide evidence that the protonation state and binding thermodynamics depend strongly on the oxidation state of the cofactor;s nicotinamide moiety. Binding thermodynamics of IDD 388, IDD 393, tolrestat, sorbinil, and fidarestat are discussed in the context of substituent effects. 相似文献
8.
The structure of aldehyde reductase (ALR1) in ternary complex with the coenzyme NADPH and 3,5-dichlorosalicylic acid (DCL), a potent inhibitor of human 20α-hydroxysteroid dehydrogenase (AKR1C1), was determined at a resolution of 2.41 Å. The inhibitor formed a network of hydrogen bonds with the active site residues Trp22, Tyr50, His113, Trp114 and Arg312. Molecular modelling calculations together with inhibitory activity measurements indicated that DCL was a less potent inhibitor of ALR1 (256-fold) when compared to AKR1C1. In AKR1C1, the inhibitor formed a 10-fold stronger binding interaction with the catalytic residue (Tyr55), non-conserved hydrogen bonding interaction with His222, and additional van der Waals contacts with the non-conserved C-terminal residues Leu306, Leu308 and Phe311 that contribute to the inhibitor’s selectivity advantage for AKR1C1 over ALR1. 相似文献
9.
The metal ion complexing properties of the ligand HQC (8-hydroxyquinoline-2-carboxylic acid) are reported. The structures of [Zn(HQCH) 2] · 3H 2O (1) and [Cd(HQCH) 2] · 3H 2O (2) were determined (HQCH = HQC with phenol protonated). Both 1 and 2 are triclinic, space group , with Z = 2. For 1 a = 7.152(3), b = 9.227(4), c = 15.629(7) Å, = 103.978(7)°, β = 94.896(7)°, γ = 108.033(8)°, R = 0.0499. For 2 a = 7.0897(5), b = 9.1674(7), c = 16.0672(11) Å, = 105.0240(10)°, β = 93.9910(10)°, γ = 107.1270(10)°, R = 0.0330. In 1 the Zn has a distorted octahedral coordination geometry, with Zn–N of 2.00 and 2.15 Å, and Zn–O to the protonated phenolic oxygens of 2.431 and 2.220 Å. The structure of 2 is similar, with Cd–N bonds of 2.220 and 2.228 Å, with Cd–O bonds to the protonated phenolate oxygens of 2.334 and 2.463 Å. The structures of 1 and 2, and isomorphous Ni(II) and Co(II) HQC complexes reported in the literature, show very interesting short (<2.5 Å) O–O distances in H-bonds involving the protons on the coordinated phenolates and lattice water molecules. These are discussed in relation to the possible role of short low-energy H-bonds in alcohol dehydrogenase in mediating the transfer of the hydroxyl proton of the alcohol to an adjacent serine oxygen. The formation constants for HQC are determined by UV–Visible spectroscopy at 25 °C in 0.1 M NaClO4 with Mg(II), Ca(II), Sr(II), Ba(II), La(III), Gd(III), Zn(II), Cd(II), Ni(II), Cu(II), and Pb(II). These show greatest stabilization with metal ions with an ionic radius above 1.0 Å. This is as would be expected from the fact that HQC forms two five-membered chelate rings on complex-formation, which favors larger metal ions. The ligand design concept of using rigid aromatic backbones in ligands to achieve high levels of preorganization, and hence the high log K values (for a tridentate ligand) and strong metal ion selectivities observed for HQC, is discussed. 相似文献
10.
Copper(II) complexes of general empirical formula, CuX(Hagpa) · nH 2O and Cu(agpa) · 2H 2O (H 2agpa = aminoguanizone of pyruvic acid, X = Cl −, Br −, , CH 3COO −, , n = 0, 1, 1.5, 2), have been synthesized and characterized by IR, EPR spectroscopy and X-ray crystallography. The IR spectra of the complexes showed the ONN coordination of the ligand to copper(II) ion. The crystal structures of H 2agpa · H 2O and complexes [Cu(Hagpa)Br] and [Cu 2(Hagpa) 2(H 2O) 2(SO 4)] · DMSO showed an invariable conformation and coordination mode for the uninegatively charged tridentate ligand and revealed the formation of linear polymers in which bromide or sulfate anions bridge the copper(II) ions. The EPR spectra for complexes CuX(Hagpa) · nH 2O are described by spin Hamiltonian for S = 1/2, without hyperfine structure. The g-tensor is symmetrical for Cu(agpa) · 2H 2O, has tri-axial anisotropy for sulfate complexes, and exhibits axial symmetry for the other compounds investigated. 相似文献
11.
Iron complexes of two ligands, HphoxCOOH and Hphox iPr, have been synthesized and characterized by crystal structure analyses. The complexes (HNEt 3) 2[Fe(phoxCOO) 2](ClO 4) and [Fe(phox iPr) 3] are reported. Reactions of the ligands rac-HphoxCOOH and rac-Hphox iPr with iron(II) or iron(III) perchlorate result in the formation of iron(III) complexes with pseudo-octahedral geometry around the metal center. The iron complex obtained from rac-HphoxCOOH crystallized in the centrosymmetric space group Cmca. The two ligands are bound in a tridentate manner generating a meridional coordination with both dianionic ligands on a metal center having the same chirality; due to the center of symmetry the complex with opposite chirality is also present. The complex (HNEt 3) 2[Fe(phoxCOO) 2](ClO 4) is the first accurate structural model of the iron complex of a siderophore analog commonly observed in mycobactins. The three didentate ligands in the complex [Fe(phox iPr) 3] are bound with like atoms in a meridional manner to the metal center. The metal ion is surrounded by two ligands of the same chirality and one ligand of opposite chirality (ie. RRS or SSR); due to the presence of a center of symmetry both isomers are present in the crystal structure. The complex (HNEt 3) 2[Fe(phoxCOO) 2](ClO 4) shows promising activity in the oxidation of alkanes, such as toluene, ethylbenzene and cumene, while the complex [Fe(phox iPr) 3] does not show any catalytic activity in alkane oxidations under the conditions tested. The complex (HNEt 3) 2[Fe(phoxCOO) 2](ClO 4) is reasonably efficient in the conversion of H 2O 2 to oxidation products. 相似文献
12.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme ( b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O 2 (to produce H 2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized ( O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 10 2 M −1 s −1, yielding a nitrosyl adduct ( d3+–NO or d2+–NO +) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, Cu B is indispensable for rapid oxidation of NO into nitrite. 相似文献
13.
X-ray crystal and other structural analyses indicate that Yb(III) and all four newly synthesized ligands can form a binuclear Yb(III) complex with a 1:1 metal to ligand stoichiometry by octacoordination at the Yb(III) center. Investigations of DNA binding properties show that all the ligands and Yb(III) complexes can bind to Calf thymus DNA through intercalations with the binding constants at the order of magnitude 10 5–10 7 M −1, but Yb(III) complexes present stronger affinities to DNA than ligands. All the ligands and Yb(III) complexes may be used as potential anticancer drugs. Investigations of antioxidation properties show that all the ligands and Yb(III) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals but Yb(III) complexes show stronger scavenging effects for hydroxyl radicals than ligands. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-Å resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The “four-helix” dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the “two-helix motif” of the cytochrome bc1 complex and the “three-helix motif” of the formate dehydrogenase/hydrogenase group. The γ-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the “E-pathway”) in concert with the transfer of two electrons via the membrane-bound haem groups. According to this “E-pathway hypothesis”, the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential. 相似文献
15.
Mononuclear iron(II) complexes of enantiopure Py(ProOH) 2 ( 2) and Py(ProPh 2OH) 2 ( 3) ligands have been prepared with FeCl 2 and Fe(OTf) 2 · 2MeCN. Both ligands coordinate to the metal in a pentadentate fashion. Next to the meridional N, N′, N-coordination of the ligand, additional coordination of the oxygen atoms of both hydroxyl groups to the metal is found in complexes 4- 7. Complex [FeCl( 2)](Cl) ( 4) shows an octahedral geometry as determined by X-ray diffraction and is formed as a single diastereoisomer. The solution structures of complexes 4- 7 were characterized by means of UV-Vis, IR, ESI-MS, conductivity and CD measurements. The catalytic potential of these complexes in the oxidation of alkenes and sulfides in the presence of H 2O 2 is presented. 相似文献
16.
Syntheses, spectroscopic and structural characterizations of a series of Cu(I)-phenanthroline complexes are reported. A single crystal X-ray structure determination is recorded for CuNO 3:dmp:MeCN (1:1:1), ‘dmp’ = 2,9-dimethyl-1,10-phenanthroline, showing it to be isomorphous with its previously studied tetrafluoroborate, perchlorate and hexafluorophosphate, and silver(I) perchlorate counterparts, the metal atom lying in a trigonal planar [( N∧N)Cu(NCMe)] coordination environment, the anion not being coordinated. Structure (re-) determinations are also reported for a number of salts of the [Cu(dmp) 2] + cation: the perchlorate, isomorphous with numerous other salts, not only of copper(I), but also lithium(I)), also the unsolvated nitrate, and a solvated form of the chloride. 相似文献
17.
Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology and binding experiments, has been used to increase our knowledge concerning the ionotropic glutamate receptor GluR2 at the molecular level. Five high-resolution X-ray structures of the ligand-binding domain of GluR2 (S1S2J) complexed with the three agonists (S)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol-4-yl]propionic acid (2-Me-Tet-AMPA), (S)-2-amino-3-(3-carboxy-5-methylisoxazol-4-yl)propionic acid (ACPA), and (S)-2-amino-3-(4-bromo-3-hydroxy-isoxazol-5-yl)propionic acid (Br-HIBO), as well as of a mutant thereof (S1S2J-Y702F) in complex with ACPA and Br-HIBO, have been determined. The structures reveal that AMPA agonists with an isoxazole moiety adopt different binding modes in the receptor, dependent on the substituents of the isoxazole. Br-HIBO displays selectivity among different AMPA receptor subunits, and the design and structure determination of the S1S2J-Y702F mutant in complex with Br-HIBO and ACPA have allowed us to explain the molecular mechanism behind this selectivity and to identify key residues for ligand recognition. The agonists induce the same degree of domain closure as AMPA, except for Br-HIBO, which shows a slightly lower degree of domain closure. An excellent correlation between domain closure and efficacy has been obtained from electrophysiology experiments undertaken on non-desensitising GluR2i(Q)-L483Y receptors expressed in oocytes, providing strong evidence that receptor activation occurs as a result of domain closure. The structural results, combined with the functional studies on the full-length receptor, form a powerful platform for the design of new selective agonists. 相似文献
19.
Eight new dimethylgallium complexes bearing 4-alkyl-2,6-bis(aryliminomethylene)-phenol ligands of type Me 2GaL [L = 4-methyl-2,6-bis-(phenyliminomethylene)-phenolato ( 3); L = 4-methyl-2,6-bis-( p-methylphenyliminomethylene)-phenolato ( 4); L = 4-methyl-2,6-bis-( 1-naphthyliminomethylene)-phenolato ( 5); L = 4-methyl-2,6-bis-( 2-chlorophenyliminomethylene)-phenolato ( 6); 4- tert-butyl-2,6-bis-(phenyliminomethylene)-phenolato ( 7); L = 4- tert-butyl-2,6-bis-( p-methylphenyliminomethylene)-phenolato ( 8); L = 4- tert-butyl-2,6-bis-( 1-naphthyliminomethylene)-phenolato ( 9); and L = 4- tert-butyl-2,6-bis-( 2-chlorophenyliminomethylene)-phenolato] ( 3) have been synthesized by the reaction of trimethylgallium with appropriate phenol. The complexes obtained have been characterized by elemental analysis, 1H NMR, IR and mass spectroscopy, respectively. The solid-state structures of dimethyl[4-methyl-2,6-bis-( p-methylphenyliminomethylene)-phenolato]gallium ( 4) have been determined by X-ray single crystal analysis. In the structure, Ga atom is coordinated by one nitrogen atom and the other nitrogen atom remains constant. The distorted tetrahedron geometry around gallium is presented. 相似文献
20.
Enantioselective reaction of the aldehydes 1a-g and the 1,3-dicarbonyl compound 2 in the presence of the chiral Lewis acid 5 , derived from diacetone glucose, leads in a sequential transformation consisting of a Knoevenagel condensation and an intramolecular Diels Alder reaction to the cycloadducts 4a-g with an ee value up to 88%. The selectivity is strongly dependent upon the temperature and solvent giving best results at room temperature in isodurene; in agreement with the principle of isoinversion, the ee values decrease at lower and higher temperatures. © 1993 Wiley-Liss, Inc. 相似文献
|