首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The overlapping effect of TSH and FSH on the gonad and on the thyroid gland can be demonstrated in cockerels even at the age of five weeks. These hormones influence the secretion of testosterone in a similar way and to a similar extent, while on the thyroxine level the influence of the specific hormone is more pronounced. Neonatal FSH and TSH treatment considerably decreased the basal testosterone level measured at the age of five weeks. Neonatal FSH treatment increased the basal T4 level while TSH treatment decreased it. The effect of TSH treatment administered at the age of five weeks in increasing the testosterone level was weakened after neonatal pretreatment with any iodine hormone. The effect of TSH treatment could only be inhibited by neonatal FSH pretreatment. Neonatal pretreatment with any of the trophormones caused a diminution of the T4 level augmenting of FSH and TSH administered at the age of five weeks.  相似文献   

2.
Treatment of rats with endotoxin immediately after birth caused destruction of the cell membrane, resulting in depression of the thyroxin level and of the response to thyrotropin in adulthood. The thyroid gland of the rats treated neonatally with endotoxin failed to differentiate TSH from gonadotropin. Neonatal treatment (imprinting) with thyrotropin or gonadotropin after preexposure to the endotoxin improved the adult response to the exogenous hormone presented for imprinting after endotoxin. It appears that during the reconstruction stage following upon membrane perturbation in the critical period of receptor maturation, the adequate hormone or a related molecule can equally adapt the receptor for itself, but neither can fully compensate the perinatal membrane injury, nor the consequent diminution of receptor activity.  相似文献   

3.
At the age of one month, incubation with melatonin of the thyroid glands of rats having received a single melatonin treatment at the age of three days resulted in increased thyroxine production. TSH was unable to enhance the thyroxine production of animals treated with melatonin neonatally, while its considerable increase could be observed in the case of control animals. Simultaneous TSH and melatonin treatment applied in vitro at the age of one month resulted in an approximately twofold increase of thyroid T4 production in rats having received neonatal melatonin treatment. In vitro alteration of the cyclic AMP level of the thyroid glands of intact and neonatally melatonin treated rats ran practically parallel, except that in the melatonin treated animals the cAMP level was higher after TSH administration. At the same time the cAMP level decreased in the thyroid gland of animals treated with TSH + melatonin. There was no exact correlation between the alterations of cAMP and T4 levels in the given experimental system.  相似文献   

4.
In the neonatal period both gonadotropin and thyrotropin increase the weight of the testis, influence considerably the diameter of the contorted tubules increase the occurrence of Sertoli cells and decrease the number of spermatogonia. These phenomena can still be observed at the age of seven days but they disappear by the age of six weeks; at that time the hormones decrease the weight of the testis. One single TSH treatment administered in the neonatal period considerably increased the weight of the testis and the diameter of the channels when investigated at the age of six weeks. Gonadotropin had none of these effects. The phenomenon of imprinting could be proved as in the animals pretreated with TSH, gonadotropin given at the age of six weeks decreased the weight of the testis and both hormones decreased the diameter of the seminiferous cords.  相似文献   

5.
At the age of 25 days the TSH-gonadotropin overlap is minimal in rats and extremely high doses of TSH are required to produce gonadotropin-like responses. Although the effect may be due also to some occasional contamination, nevertheless a single treatment of newborn animals (hormonal imprinting) with either hormone augmented the response to a second treatment with either hormone performed at 25 days of age. Newborn rats pretreated with either TSH or gonadotropin were exposed to a second TSH challenge at the age of 25 days exhibited responses which were not commeasurable to those observed after gonadotropin treatment alone. However, the amplifying action of TSH pretreatment with regard to the second response to gonadotropin was comparable or even more apparent than that of gonadotropin pretreatment.  相似文献   

6.
Hormonal imprinting is characteristic of the neonatal age, in which the receptor of the target cell matures, i.e. acquires its adult binding capacity, and cellular response becomes established in presence of the adequate hormone. The normal course of imprinting may be altered by certain molecules (related hormones, hormone analogons) which are able to bind to the receptor of the adequate hormone. The chemically related gonadotropic and thyrotropic hormones may overlap on each other's receptors not only in the perinatal age, but also in the early adulthood, and this overlap of the binding may give rise to an imprinting-like effect. An example of this phenomenon was observed in the present study, in which rats of seven weeks of age treated with gonadotropin showed a significant decrease in thyroidic response to TSH, and exposure to TSH failed to increase their basic thyroxine concentration to the normal (control) level. This depressive effect of gonadotropin was slightly reduced in the presence of LPS (endotoxin), causing membrane perturbation, while pretreatment with LPS and TSH accounted for an increased sensitivity to TSH in later phases of the rat's life. These experimental observations support the possibility of a special form of imprinting in adolescence.  相似文献   

7.
There are two basic mechanisms whereby chemicals produce thyroid gland neoplasia in rodents. The first involves chemicals that exert a direct carcinogenic effect in the thyroid gland and the other involves chemicals which, through a variety of mechanisms, disrupt thyroid function and produce thyroid gland neoplasia secondary to hormone imbalance. These secondary mechanisms predominantly involve effects on thyroid hormone synthesis or peripheral hormone disposition. There are important species differences in thyroid gland physiology between rodents and humans that may account for a marked species difference in the inherent susceptibility for neoplasia to hormone imbalance. Thyroid gland neoplasia, secondary to chemically induced hormone imbalance, is mediated by thyroid-stimulating hormone (TSH) in response to altered thyroid gland function. The effect of TSH on cell proliferation and other aspects of thyroid gland function is a receptor mediated process and the plasma membrane surface of the follicular cell has receptors for TSH and other growth factors. Small organic molecules are not known to be direct TSH receptor agonists or antagonists; however, various antibodies found in autoimmune disease such as Graves' disease can directly stimulate or inhibit the TSH receptor. Certain chemicals can modulate the TSH response for autoregulation of follicular cell function and thereby increase or decrease the response of the follicular cell to TSH. It is thus important to consider mechanisms for the evaluation of potential cancer risks. There would be little if any risk for non-genotoxic chemicals that act secondary to hormone imbalance at exposure levels that do not disrupt thyroid function. Furthermore, the degree of thyroid dysfunction produced by a chemical would present a significant toxicological problem before such exposure would increase the risk for neoplasia in humans.  相似文献   

8.
Studies were conducted to determine if brief exposure, in utero, to high levels of T4 or to the synthetic thyromimetic agent 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT) can produce permanent disruption of the thyroid control system in a manner analogous to the changes in the "set point" reported to occur due to neonatal T4 exposure in the "neo-T4 syndrome". If such a change were to occur, it could explain the persistent thyroid disturbances seen in the progeny of hypothyroid mother rats. These latter progeny are exposed in utero to both low and high serum T4 levels. Maternal T4 treatment produced a 4-fold elevation in fetal serum T4 accompanied by a large decrease in serum TSH levels. The brief treatment in utero with high doses of T4 or of DIMIT resulted in higher neonatal mortality and the T4-treatment produce subsequent growth stunting. These treatments resulted in suppression of the fetal/neonatal thyroid which was very apparent at 5 days of age. At 30 days post-partum, the thyroid control system of the progeny of the T4 and DIMIT-treated animals was still abnormal with low serum T4 levels accompanied with normal serum TSH and T3 levels. At 60 days of age, serum T4 levels remained low in the progeny of the T4-treated animals and the TSH response to TRH was subnormal in both the progeny of the T4-treated and the DIMIT-treated animals. However, serum and pituitary TSH and serum T3 were normal. The thyroid control system of the rat is sensitive to prenatal exposure to hyperthyroxinemia as it is to postnatal exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In order to elucidate the maternal factors influencing the functional development of the fetal rat thyroid gland, pregnant rats were subjected to either thyroidectomy or administration of PTU or TSH and the thyroid glands of the fetuses were examined chronologically by immunohistochemistry to detect thyroglobulin (Tg), T4 and T3. In the group undergoing thyroidectomy, the occurrence of immunoreactive Tg, T4 and T3 was the same as in the control group in spite of slight retardation of the development of the thyroid gland. On the other hand, PTU administration caused remarkable degeneration of the hyperplastic epithelium of the follicles, where immunoreactivity of T4 and T3 was barely detectable, suggesting a transplacental effect of PTU on the fetal thyroid gland. However, Tg remained unaffected and was stained as well as in the controls. Injection of TSH led to a delay in the occurrence of T4 and T3 by one day, probably due to increased levels of thyroid hormone from the stimulated thyroid gland of the mother rats.  相似文献   

10.
Hyperthyroidism is characterized by an increased metabolic rate with the alteration of immune activity. The pineal hormone melatonin regulates various physiological activities through sensitization of MT1 and MT2 membrane receptors in mammals. In the present study we have evaluated the involvement of MT1 and MT2 receptors in melatonin mediated modulation of thyroid hormones and splenocyte proliferation in experimentally induced hyperthyroidic mice. The l-thyroxine treatment induced the hyperthyroidism in mice evidenced with hypersecretion of T3 and T4 hormones from thyroid gland. Hyperthyroidic state increased the TSH hormone level which might be inducing hyper activity in thyroid gland. Exogenous melatonin suppressed the thyroid hormones level as well as TSH level in circulation. The l-thyroxine treatment increased the splenocyte proliferation and showed synergic effects along with melatonin. l-thyroxine treated mice alone or along with melatonin treatment showed differential expression pattern of MT1 and MT2 receptors protein in thyroid and spleen tissues. It seems that melatonin regulates thyroid hormones and splenocyte proliferation through activation of MT1 and MT2 receptors.  相似文献   

11.
Cellular levels of mRNA encoding pro TRH in the rostral paraventricular nucleus are reduced by thyroid hormones. To determine whether this regulatory effect of thyroid hormones requires a functional pituitary gland or, specifically, TSH, we examined the effect of T3 on proTRH mRNA in hypophysectomized, thyro-parathyroidectomized male rats with or without bovine TSH replacement. Hypophysectomy plus thyro-parathyroidectomy reduced serum T4 and TSH to undetectable levels in all animals and elevated TRH mRNA in the paraventricular nucleus over that of sham-operated animals. Eleven consecutive daily injections of T3 significantly reduced TRH mRNA levels in both sham controls and thyro-parathyroidectomized rats. However, 11 daily injections of bovine TSH (1 U/day) failed to alter the effect of T3 on TRH mRNA levels. These results demonstrate that the regulatory influence of thyroid hormones on the biosynthesis of TRH within the thyrotropic center of the brain is independent of the pituitary gland and of TSH.  相似文献   

12.
Leptin, the product of the ob gene, is a hormone secreted by adipocytes that regulates food intake and energy expenditure. The hypothalamus-pituitary-thyroid axis is markedly influenced by the metabolism status, being suppressed during food deprivation. The present study was designed to ascertain whether (1) lizard thyroid gland expresses the long form of leptin receptor (Ob-Rb) and (2) the leptin administration affects the thyroid gland activity in this species (and to verify whether leptin plays a similar role in reptiles as observed in the other vertebrates). The presence of leptin receptor in the thyroid gland of Podarcis sicula was demonstrated by immunohistochemical technique (avidin-biotin-peroxidase complex--ABC method). The role of leptin in the control of thyroid gland activity was studied in vivo using light microscopy (LM) technique coupled to a specific radioimmunoassay for thyroid-stimulating hormone (TSH) and thyroid hormones (T4 and T3). Leptin (0.1 mg/100 g body wt)/day increased T4 and T3 release for 3 days but decreased the plasma concentration of TSH; using LM clear signs of stimulation in the thyroid gland were observed. These findings suggest that systemic administration of leptin stimulates the morphophysiology of the thyroid gland in the lizard through a direct mechanism involving Ob-Rb.  相似文献   

13.
We have assessed the gonadotropin, TSH and PRL responses to the non aromatizable androgens, mesterolone and fluoxymestrone, in 27 patients with primary testicular failure. All patients were given a bolus of LHRH (100 micrograms) and TRH (200 micrograms) at zero time. Nine subjects received a further bolus of TRH at 30 mins. The latter were then given mesterolone 150 mg daily for 6 weeks. The remaining subjects received fluoxymesterone 5 mg daily for 4 weeks and 10 mg daily for 2 weeks. On the last day of the androgen administration, the subjects were re-challenged with LHRH and TRH according to the identical protocol. When compared to controls, the patients had normal circulating levels of testosterone, estradiol, PRL and thyroid hormones. However, basal LH, FSH and TSH levels, as well as gonadotropin responses to LHRH and TSH and PRL responses to TRH, were increased. Mesterolone administration produced no changes in steroids, thyroid hormones, gonadotropins nor PRL. There was, however, a reduction in the integrated and incremental TSH secretion after TRH. Fluoxymesterone administration was accompanied by a reduction in thyroid binding globulin (with associated decreases in T3 and increases in T3 resin uptake). The free T4 index was unaltered, which implies that thyroid function was unchanged. In addition, during fluoxymesterone administration, there was a reduction in testosterone, gonadotropins and LH response to LHRH. Basal TSH did not vary, but there was a reduction in the peak and integrated TSH response to TRH. PRL levels were unaltered during fluoxymesterone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We designed three experiments to determine both the optimal dose of and time on experiment for methimazole (MMI; 1-methyl-2-mercaptimidazole). Our goals were to determine if chicken growth was related to thyroid hormone levels and if intermediary metabolism changed along with changes in thyroid hormone levels. Initiating MMI at one week of age decreased (P<0.01) plasma thyroid levels and growth in four-week old birds. In contrast, initiating MMI at two and three weeks of age decreased (P<0.05) hormone levels without affecting growth as severely. Although initiating MMI at two weeks of age depressed (P<0.05) plasma thyroid hormones at four weeks, there was little change in vitro lipogenesis at four weeks. Again, initiating MMI at one week of age decreased body weight, plasma thyroid hormones and in vitro lipogenesis at four weeks of age. In addition, this treatment also decreased (P<0.05) malic enzyme activity at this same age period. The second experiment showed that MMI, initiated at 14 days, had no significant effect on 28-day body weight and again decreased both plasma T(3) and T(4) but T(3) replacement increased plasma T(3) in both 14-28-day treatment groups. All body weights were similar at 30 days, however. Lastly, diets containing graded levels of MMI decreased thyroid hormones and body weight (0>0.25>0.5>1 g MMI/kg). In contrast, only the two higher levels (0.5 and 1 g MMI/kg) decreased in vitro lipogenesis. Growth depression, caused by MMI feeding, can occur without changes in lipid metabolism. The length of MMI administration may be as important as dose level in obtaining effects (growth, thyroid hormone depression and inhibition of lipogenesis).  相似文献   

15.
The general membrane-damaging effect of endotoxins (LPS) may be also demonstrated on the follicular cells of thyroid gland. Serum T4 level significantly decreased and the response of thyroid gland to exogenous THS was markedly inhibited in experimental endotoxin and other so-called enteroendotoxemic shocks (e.g. intestinal ischemia, tourniquet shock, intestinal syndrome of radiation disease). A single subtoxic dose of LPS given to newborn rats decreased the T4 level, the response of thyroid to TSH in adulthood and caused a somatic retardation. The radio-detoxified endotoxin (TOLERIN) did not inhibit the thyroid response to TSH. TOLERIN pretreatment protected the rats against LPS and other enteroendotoxemic shocks.  相似文献   

16.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

17.
To clarify the maturation process of the pituitary-thyroid axis during the perinatal period, thyrotropin (TSH) response to thyrotropin releasing hormone (TRH) and serum thyroid hormone levels were examined in 26 healthy infants of 30 to 40 weeks gestation. A TRH stimulation test was performed on 10 to 20 postnatal days. Basal concentrations of serum thyroxine (T4), free thyroxine (free T4) and triiodothyronine (T3) were positively correlated to gestational age and birth weight (p less than 0.001-0.01). Seven infants of 30 to 35 gestational weeks demonstrated an exaggerated TSH response to TRH (49.7 +/- 6.7 microU/ml versus 22.1 +/- 4.8 microU/ml, p less than 0.001), which was gradually reduced with gestational age and normalized after 37 weeks gestation. A similar decrease in TSH responsiveness to TRH was also observed longitudinally in all of 5 high responders repeatedly examined. There was a negative correlation between basal or peak TSH concentrations and postconceptional age in high responders (r = -0.59 p less than 0.05, r = -0.66 p less than 0.01), whereas in the normal responders TSH response, remained at a constant level during 31 to 43 postconceptional weeks. On the other hand, there was no correlation between basal or peak TSH levels and serum thyroid hormones. These results indicate that (1) maturation of the pituitary-thyroid axis is intrinsically controlled by gestational age rather than by serum thyroid hormone levels, (2) hypersecretion of TSH in preterm infants induces a progressive increase in serum thyroid hormones, and (3) although there is individual variation in the maturation process, the feedback regulation of the pituitary-thyroid axis matures by approximately the 37th gestational week.  相似文献   

18.
Earlier our laboratory reported the ontogenic profiles of serum thyroxine (T4) and triiodothyronine (T3) concentrations and nerve growth factor levels in the submandibular gland of Swiss-Webster mice. Further, we demonstrated a responsivity of submandibular gland-nerve growth factor concentrations to exogenously administered T4. To further our understanding of the interactions between thyroid hormones and submandibular gland-nerve growth factor we utilized a congenitally hypothyroid mouse model to examine submandibular gland-nerve growth factor in euthyroid, hypothyroid and hypothyroid-T4 replaced mouse pups. Serum T4 values in the congenitally hypothyroid (hyt/hyt) mice were unmeasurable and their growth in body weight, their incisor eruption, and their eyelid opening were significant delayed. Submandibular gland/body weight ratios were significantly reduced relative to control or heterozygous (+/hyt) animals through 40 days. The increase in submandibular gland-nerve growth factor concentrations observed in normal animals before 20 days was delayed to 35 days in the (hyt/hyt) animals. T4 treatment of (hyt/hyt) animals from 11 or 18 days of age significantly increased mean 40 day submandibular gland/body weight ratios and submandibular gland-nerve growth factor concentrations. However, the 40 day submandibular gland-nerve growth factor levels in treated animals remained significantly below the level of control euthyroid mice. Thus, the possibility of critical time of thyroid hormone replacement for normal submandibular gland maturation has not been shown but must be further explored in this model.  相似文献   

19.
In order to determine if thyroid disease in hypogonadal men is the result of chronic elevation of serum gonadotropins, thyroid histology and serum thyroid hormone levels were evaluated in male rats that had been castrated either 2 weeks or 15 months previously. Despite significantly elevating serum LH levels, castration did not affect thyroid structure or function. Serum total T4 levels were reduced with age in both short and long-term castrate animals but returned to the levels seen in young rats when testosterone was replaced. Testosterone replacement also increased free T4 levels in both the young and old castrate rats. Neither age nor testosterone replacement affected serum T3 or TSH levels.  相似文献   

20.
A single gonadotropin treatment of newborn rats influenced the thyrotropin (TSH) provoked thyroxine (T4) production of 2 months old animals. On pretreatment with 10, 20, 50, 100 and 200 I.U. of gonadotropin, the T4 blood level of animals given 10 and 200 I.U. differed scarcely from the controls treated only by TSH, while intermediary doses had a damaging effect as the T4 values were well below the control values measured in animals treated by TSH in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号