首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current comparative maps between human chromosome 21 and the proximal part of cattle chromosome 1 are insufficient to define chromosomal rearrangements because of the low density of mapped genes in the bovine genome. The recently completed sequence of human chromosome 21 facilitates the detailed comparative analysis of corresponding segments on BTA1. In this study eight bovine bacterial artificial chromosome (BAC) clones containing bovine orthologues of human chromosome 21 genes, i.e. GRIK1, CLDN8, TIAM1, HUNK, SYNJ1, OLIG2, IL10RB, and KCNE2 were physically assigned by fluorescence in situ hybridization (FISH) to BTA1q12.1-q12.2. Sequence tagged site (STS) markers derived from these clones were mapped on the 3000 rad Roslin/Cambridge bovine radiation hybrid (RH) panel. In addition to these eight novel markers, 17 known markers from previously published BTA1 linkage or RH maps were also mapped on the Roslin/Cambridge bovine RH panel resulting in an integrated map with 25 markers of 355.4 cR(3000) length. The human-cattle genome comparison revealed the existence of three chromosomal breakpoints and two probable inversions in this region.  相似文献   

2.
A comparative genome map is necessary for the implementation of comparative positional candidate gene cloning in cattle. We have developed a medium density comparative gene map of bovine chromosome 25 (BTA25). A radiation hybrid (RH) panel was used to map nine microsatellites and nine genes. Eight of the nine comparative loci were also mapped by FISH. These results were combined with data from published articles to create a comprehensive comparative map of BTA25 with human chromosomes 7 (HSA7) and 16 (HSA16). This map should facilitate the cloning of genes of interest on bovine chromosome 25.  相似文献   

3.
We have constructed a high-density comparative radiation hybrid map of the interstitial region of bovine chromosome 5 (BTA5) using a recently constructed 12,000-rad, whole-genome, cattle-hamster radiation hybrid (WGRH) panel. Sixty-two bovine EST markers were selected which have orthologous sequences on human chromosomes 12 and 22 (HSA12 and HSA22). Sixty markers were included in the multi-point framework map at LOD 3.0. Our comprehensive RH map contains more than twice as many markers (88) than previous generation maps. Because of a higher marker density and increased resolution of the RH(12,000) panel, all markers were placed into a single linkage group based on two-point analysis at a LOD score 6.0. As a result, this new comparative map reveals new blocks of synteny and extensive gene order alterations between species. Breakpoints of synteny are located with high accuracy. Overall, this work reveals widespread chromosomal rearrangements between bovine, human and mouse genomes.  相似文献   

4.
A high-resolution comparative RH map of porcine Chromosome (SSC) 2   总被引:2,自引:0,他引:2  
A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16 genes from human Chromosome (HSA) 11p, HSA19p, and HSA5q were newly assigned to SSC2. One linkage group was observed at LOD 3.0, and five linkage groups at LOD 4.0. Comparison of the porcine RH map with homologous human gene orders identified four conserved segments between SSC2 and HSA11, HSA19, and HSA5. Concerning HSA11, a rearrangement of gene order is observed. The segment HSA11p15.4-q13 is inverted on SSC2 when compared with the distal tip of SSC2p, which is homologous to HSA11p15.5. The boundaries of the conserved segments between human and pig were defined more precisely. This high-resolution comparative map will be a valuable tool for further fine mapping of the QTL area. Received: 10 November 2000 / Accepted: 23 January 2001  相似文献   

5.
Polymorphic microsatellites have been developed in the vicinity of nine genes on bovine chromosome (BTA) 24, all orthologous to genes on human chromosome (HSA) 18. The microsatellites have been isolated from bacterial and yeast artificial chromosome clones containing the genes. A linkage map was developed including these polymorphic markers and four anonymous, published microsatellites. Yeast artificial chromosomes containing six of these genes have also been mapped using fluorescent in situ hybridization (FISH), thereby tying the linkage map together with the physical map of BTA24. Comparing gene location on HSA18 and BTA24 identifies four regions of conserved gene order, each containing at least two genes. These genes identify six regions of conserved order between human and mouse, two more than in the human-bovine comparison. The breakpoints between regions of conserved order for human-bovine are also breakpoints in the human-mouse comparison. The centromere identifies a fifth conserved region if the BTA24 centromere is orthologous with the HSA18 centromere. Received: 17 September 1998 / Accepted: 4 December 1998  相似文献   

6.
This study reports a high-resolution comparative map between human chromosomes and porcine chromosomes 2 (SSC2) and 16 (SSC16), pointing out new homologies and evolutionary breakpoints. SSC2 is of particular interest because of the presence of several important QTLs. Among 226 porcine ESTs selected according to their expected localization, 151 were RH mapped and ordered on SSC2. This study confirmed the extensive conservation between SSC2 and HSA11 and HSA19 and refined the homology with HSA5 (three blocks defined). Furthermore the SSC2q pericentromeric region was shown to be homologous to another human chromosome (HSA1). A complex organization of these syntenies was demonstrated on SSC2q. Our strategy led us to improve also the SSC16 RH map by adding 45 markers. Two-color fluorescence in situ hybridization of markers representative of each synteny confirmed block order. Finally, 29 breakpoints were identified in both species, and porcine BACs containing two breakpoints were isolated.  相似文献   

7.
We present herein a bovine chromosome 24 (BTA24) radiation hybrid (RH) map using 40 markers scored on a panel of 90 RHs. Of these markers, 29 loci were ordered with odds of at least 1000:1 in a framework map. An average retention frequency of 17.4% was observed, with relatively higher frequencies near the centromere. The length of the comprehensive map was 640 centiray5000 (cR5000) with an average marker interval of approximately 17.3 cR5000. The observed locus order is generally consistent with currently published bovine linkage and physical maps. Nineteen markers were either Type I loci or closely associated with expressed sequences and thus could be used to compare the BTA24 RH map with human mapping information. All genes located on BTA24 were located on human chromosome 18, and previously reported regions of conserved synteny were extended. The comparative data revealed the presence of at least six conserved regions between these chromosomes.  相似文献   

8.
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10.  相似文献   

9.
Conserved segments have been identified by ZOO-FISH between pig chromosome 9 (SSC9) and human chromosomes 1, 7 and 11. To assist in the identification of positional candidate genes for QTL on SSC9, the comparative map was further developed. Primers were designed from porcine EST sequence homologous to genes in regions of human chromosomes 1, 7 and 11. Porcine ESTs were then physically assigned using the INRA somatic cell hybrid panel (INRASCHP) and the high-resolution radiation hybrid panel (IMpRH). Seventeen genes (PEPP3, RAB7L1, FNBP2, MAPKAPK2, GNAI1, ABCB1, STEAP, AKAP9, CYP51A1, SGCE, ROBO4, SIAT4C, GLUL, CACNA1E, PTGS2, C1orf16 and ETS1) were mapped to SSC9, while GUSB, CPSF4 and THG-1 were assigned to SSC3.  相似文献   

10.
We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC17 is of particular interest in studies of chromosomal organization due to the presence of QTLs that affect meat quality and carcass composition. A total of 158 pig ESTs available in databases or developed by the Sino-Danish Pig Genome Sequencing Consortium were mapped using the INRA-University of Minnesota porcine radiation hybrid panel. The high-resolution map was further anchored by fluorescence in situ hybridization. This study confirmed the extensive conservation between SSC17 and HSA20 and enabled the gene order to be determined. The homology of the SSC17 pericentromeric region was extended to other human chromosomes (HSA4, HSA8) and the chromosomal breakpoint boundaries were accurately defined. In total 15 breakpoints were identified.  相似文献   

11.
In this study we present a comprehensive 3000-rad radiation hybrid map on bovine chromosome 5 (BTA5) of a region between 12.8 and 74.0 cM according to the linkage map, which contains a quantitative trait loci for ovulation rate. We mapped 28 gene-associated sequence tagged site markers derived from sequences of bovine BAC clones and 10 microsatellite markers to the BTA5 region. In comparison with HSA12q, four blocks of conserved synteny were apparent showing three chromosomal breakpoints and two inversions in this segment of BTA5. Therefore, we have improved breakpoint resolution in the human-bovine comparative map, which enhances the determination of candidate genes underlying traits of interest mapped to BTA5.  相似文献   

12.

Background

The generation of BAC/PAC contigs in targeted genome regions is a powerful method to establish high-resolution physical maps. In domestic animal species the generation of such contigs is typically initiated with the screening of libraries with probes derived from human genes that are expected to be located in the region of interest by comparative mapping. However, in many instances the available gene-derived probes are too far apart to allow the cloning of BAC/PAC contigs larger than a few hundred kb. High resolution physical mapping allows to estimate the sizes of gaps and to control the orientation of the individual sub-contigs, which helps to avoid errors during the assembly of smaller contigs into final Mb-sized contigs. The recently constructed porcine IMNpRH2 panel allowed us to use this approach for the construction of high-resolution physical maps of SSC 6q1.2.

Results

Two sequence-ready BAC/PAC contigs of the gene-rich region on porcine chromosome 6q1.2 (SSC 6q1.2) containing the RYRl gene were constructed. The two contigs spanned about 1.2 Mb and 2.0 Mb respectively. The construction of these contigs was monitored by the results provided by the mapping of 15 markers on the IMpRH7000rad and 35 markers on the IMNpRH212000rad radiation hybrid panels. Analyses on the IMpRH panel allowed us to globally link and orientate preliminary smaller contigs, whereas analyses on the high resolution IMNpRH2 panel allowed us to finally identify the order of genes and markers.

Conclusions

A framework map of 523 cR12000 was established covering the whole studied region. The order of markers on the framework 1000:1 RH map was found totally consistent with the data deduced from the contig map. The kb/cR ratio was very constant in the whole region, with an average value of 6.6 kb/cR. We estimate that the size of the remaining gap between the two contigs is of about 300 kb. The integrated physical and RH map of the investigated region on SSC 6q1.2 was used for a comparative analysis with respect to the syntenic regions on HSA 19q13.1 and MMU 7 and revealed a perfectly conserved gene order across the entire studied interval.
  相似文献   

13.
A first-generation EST RH comparative map of the porcine and human genome   总被引:10,自引:0,他引:10  
We have constructed a first-generation EST radiation hybrid comparative map of the porcine genome by assigning 1058 markers to the IMpRH7000 panel. Chromosomal localization was determined with a 2pt LOD of 4.8 for 984 markers, using the IMpRH mapping tool. Annotated ESTs represent 46.2% or 489 of the markers. Marker distribution was not stochastic and ranged from 0.41 for SSC8 to 1.77 for SSC12, respectively. Two hundred fifty-one markers assigned to the physical map of the pig did not find a homologous sequence in V22 of the human genome assembly, indicative of gaps in the assembled human genome sequence. The comparative porcine/human map covers 3290 MB, or 98.3% of the presumed size of the human genome. However, 60 breakpoints were identified between chromosomes, as well as 90 micro-rearrangements within synteny groups. Six porcine chromosomes—SSC2, 5, 6, 7, 12, and 14—correspond to the three gene-richest human chromosomes, HSA17, 19, and 22, and show above average marker density. Porcine Chrs 1, 8, 11, and X display a low DNA/marker ratio and correspond to the 'genome deserts' on HSA 18, 4, 13, and X.  相似文献   

14.
Previous results showed that loci from human chromosome 17q (HSA17q) map to the centromeric two-thirds of dog chromosome 9 (CFA9). In these studies fluorescence in situ hybridization (FISH) using a human total chromosome 17 painting probe, indicated that the telomeric one-third of CFA9 must have homology to one or more human chromosomes other than HSA17. Here we report that this distal part of CFA9 contains a segment syntenic to the telomeric end of HSA9q and mouse chromosome 2 (MMU2). The gene loci encoding retinoid X receptor, alpha (RXRA) and heat shock protein 5 (HSPA5 or GRP78), which are found on HSA9q34 and MMU2, occupy a region on CFA9 distal to NF1 and CRYBA1. FISH of a canine specific genomic cosmid clone for RXRA demonstrated the more telomeric localization of this locus to NF1 on CFA9. A linkage map developed for the distal region of CFA9 included: NF1-(2·7 CM )-CRYBA1-(6·5 CM )-RXRA-(22 CM )-HSPA5. The next best order, RXRA-NF1-CRYBA1-HSPA5 with a difference in the log odds of 1·43 does not correspond to our findings with FISH. The most probable map order places HSPA5 distal to RXRA on CFA9 whereas in humans it lies centromeric of RXRA on HSA9q34.  相似文献   

15.
A comparative mapping approach was applied in order to refine the extent and the distribution of conserved segments between human chromosome 11 (HSA11) and cattle chromosomes 15 and 29 (BTA15 and BTA29 respectively). Eight genes from HSA11 were mapped using a bovine-hamster somatic cell hybrid panel and seven represent new assignments. Adding these assignments to those present in human, mouse and cattle databases, a new conserved segment was identified between the telomeric region of HSA11 and BTA29. This brings to seven the number of conserved segments identified between HSA11 and BTA15 and 29, and our study refines their boundaries to the level of the human cytogenetic band.  相似文献   

16.
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals.  相似文献   

17.
Genome-wide scans have mapped economically important quantitative trait loci (QTL) for mastitis susceptibility in dairy cattle at the telomeric end of bovine chromosome 18 (BTA18). In order to increase the density of markers in this chromosomal region and to improve breakpoint resolution in the human-bovine comparative map, this study describes the chromosomal assignment of seven newly developed gene-associated markers and five microsatellites and eight previously mapped sequence tagged site markers near these QTL. The orientation of KCNJ14, BAX, CD37, NKG7, LIM2, PRKCG, TNNT1, MGC2705, RPL28, EPN1, ZNF582, ZIM2, STK13, ZNF132 and SLC27A5 on the 3000-rad radiation hybrid (RH) map of BTA18 is homologous to the organization found on the corresponding 10 Mbp of human chromosome 19q (HSA19q). The resulting bovine RH map with a length of 20.9 cR spans over about 11 cM on the bovine linkage map. The location of KCNJ14 and SLC27A5 flanking the RH map on BTA18q25-26 has been confirmed by fluorescence in situ hybridization. The data of this refined human-bovine comparative map should improve selection of candidate genes for mastitis susceptibility in dairy cattle.  相似文献   

18.
19.
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.  相似文献   

20.
We report here the localisation of BAIAP1 (13q24), HTR1F (13q45), PTPRG (13q23) and UBE1C (13q24) by fluorescence in situ hybridisation (FISH), and BAIAP1 (Swr2114; 21 cR; LOD = 11.03), GATA2 (Sw2448; 37 cR; LOD = 8.26), IL5RA (Swr2114; 64 cR; LOD = 3.85), LMCD1 (Sw2450; 61 cR; LOD = 4.73), MME (CP; 50 cR; LOD = 7.75), RYK (Swc22; 12 cR; LOD = 18.62) and SGU003 (Sw1876; 6 cR; LOD = 16.99) by radiation hybrid (RH) mapping to porcine chromosome 13 (SSC13). The mapping of these 10 different loci (all mapped to human chromosome 3; HSA3) not only confirms the extended conservation of synteny between HSA3 and SSC13, but also defines more precisely the regions with conserved linkage. The syntenic region of the centromeric part of SSC13 was determined by isolating porcine bacterial artificial chromosome (BAC) clones (842D4 and 1031H1) using primers amplifying porcine microsatellite markers S0219 and S0076 (mapped to this region). Sequence comparison of the BAC end sequences with the human genome sequence showed that the centromeric part of SSC13 is homologous with HSA3p24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号