首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cyclophosphamide-induced granulocyte depletion on toluene diisocyanate (TDI)-related changes in airway reactivity and pathology was assessed in guinea pigs. Twelve cyclophosphamide-treated and 12 control animals comprising each group were studied physiologically before and 2 h after a single 10-min exposure to 3 ppm of TDI. Reactivity was determined in intact unanesthetized animals by measuring specific airway conductance before and during intravenous acetylcholine infusion. After testing, tracheal tissue for light microscopic examination was obtained from three hyperreactive guinea pigs in each exposed group and compared with tissue from treated and control animals (n = 3 each) that had not been TDI exposed. Cyclophosphamide treatment caused substantial decreases in both circulating and airway granulocyte counts. However, the incidence and degree of bronchial hyperreactivity that occurred 2 h post-TDI was similar in the untreated and treated groups. Our results indicate that TDI-induced bronchial hyperreactivity 1) occurs shortly after a brief high concentration exposure and 2) appears independent of circulating or airway granulocyte counts.  相似文献   

2.
Although ebselen, a seleno-organic compound, inhibits inflammation in various animal models, its efficacy as an anti-asthma drug remains to be clarified. In this study, we investigated the inhibitory effect of ebselen on a guinea pig asthma model. Ebselen was orally administered at dosages of 1-20 mg/kg 2 h before an ovalbumin (OA) challenge, and then airway responses, airway inflammation, the generation of superoxide, H(2)O(2), and nitrotyrosine, and the induction of inducible nitric oxide synthase (iNOS) were evaluated. Sensitized animals challenged with OA aerosol showed dual airflow limitations, i.e., immediate and late airway responses (IAR and LAR). Ebselen significantly inhibited LAR at dosages greater than 10 mg/kg, but did not inhibit IAR at any dosage. Bronchoalveolar lavage (BAL) examination showed that airway inflammation was significantly suppressed by ebselen at 10 mg/kg. The generation of superoxide and H(2)O(2) occurred on endothelial cells of LAR bronchi, and was inhibited by 10 mg/kg of ebselen. Superoxide generation was inhibited by diphenyleneiodonium chloride (DPI), a NAD(P)H oxidase inhibitor, but not by allopurinol, a xanthine oxidase inhibitor. Immunoreactivities for iNOS and nitrotyrosine were also observed on endothelial cells of LAR bronchi and were abolished in ebselen-treated animals. The present findings suggest that ebselen can be applied as a new therapeutic agent for asthma. The possible mechanisms by which ebselen inhibits LAR likely involve suppression of oxidant formation and iNOS induction in endothelial cells.  相似文献   

3.
Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, but are less effective in chronic asthma. We tested whether atropine, given before antigen challenge, affected hyperreactivity, M(2) receptor function, eosinophil accumulation, and activation. Sensitized guinea pigs received atropine (1 mg/kg ip) 1 h before challenge and 6 h later. Twenty-four hours after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Airway reactivity to electrical stimulation of the vagi and to intravenous acetylcholine was not altered by atropine pretreatment in nonsensitized animals, indicating that atropine was no longer blocking postjunctional muscarinic receptors. Antigen challenge induced airway hyperreactivity to vagal stimulation that was significantly potentiated by atropine pretreatment. Bronchoconstriction induced by acetylcholine was not changed by antigen challenge or by atropine pretreatment. M(2) receptor function was lost in challenged animals but protected by atropine pretreatment. Eosinophils in bronchoalveolar lavage and within airway tissues were significantly increased by challenge but significantly reduced by atropine pretreatment. However, extracellular MBP in challenged airways was significantly increased by atropine pretreatment, which may account for reduced eosinophils. Depleting eosinophils with antibody to IL-5 before challenge prevented hyperreactivity and significantly reduced MBP in airways of atropine-pretreated animals. Thus atropine pretreatment potentiated airway hyperreactivity by increasing eosinophil activation and degranulation. These data suggest that anticholinergics enhance eosinophil interactions with airway nerves.  相似文献   

4.
5.

Background

Phosphodiesterase 4 (PDE4) inhibitors increase intracellular cyclic adenosine monophosphate (cAMP), leading to regulation of inflammatory cell functions. Roflumilast is a potent and targeted PDE4 inhibitor. The objective of this study was to evaluate the effects of roflumilast on bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation in mild asthmatic patients undergoing allergen inhalation challenge.

Methods

25 subjects with mild allergic asthma were randomized to oral roflumilast 500 mcg or placebo, once daily for 14 days in a double-blind, placebo-controlled, crossover study. Allergen challenge was performed on Day 14, and FEV1 was measured until 7 h post challenge. Methacholine challenge was performed on Days 1 (pre-dose), 13 (24 h pre-allergen), and 15 (24 h post-allergen), and sputum induction was performed on Days 1, 13, 14 (7 h post-allergen), and 15.

Results

Roflumilast inhibited the allergen-induced late phase response compared to placebo; maximum % fall in FEV1 (p = 0.02) and the area under the curve (p = 0.01). Roflumilast had a more impressive effect inhibiting allergen-induced sputum eosinophils, neutrophils, and eosinophil cationic protein (ECP) at 7 h post-allergen (all p = 0.02), and sputum neutrophils (p = 0.04), ECP (p = 0.02), neutrophil elastase (p = 0.0001) and AHR (p = 0.004) at 24 h post-allergen.

Conclusions

This study demonstrates a protective effect of roflumilast on allergen-induced airway inflammation. The observed attenuation of sputum eosinophils and neutrophils demonstrates the anti-inflammatory properties of PDE4 inhibition and supports the roles of both cell types in the development of late phase bronchoconstriction and AHR.

Trial Registration

ClinicalTrials.gov: NCT01365533
  相似文献   

6.
BACKGROUND: The pathogenesis of asthma is believed to reflect antigen-induced airway inflammation leading to the recruitment of eosinophils and activation of mast cells through cell-associated IgE. Controversies persist however, regarding the relative importance of different pathogenic cells and effector molecules. MATERIALS AND METHODS: A variety of gene-targeted mice were examined for the induction of cholinergic airway hyperresponsiveness (AH), allergic airway inflammation, mucus production, and serum IgE reactivity following intratracheal challenge with a potent allergen. AH was determined using whole-body plethysmography following acetylcholine challenge. Where possible, results were confirmed using neutralizing antibodies and cell-specific reconstitution of immune deficient mice. RESULTS: T and B cell-deficient, recombinase-activating-gene-deficient mice (RAG -/-) failed to develop significant allergic inflammation and AH following allergen challenge. Reconstitution of RAG -/- mice with CD4+ T cells alone was sufficient to restore allergen-induced AH, allergic inflammation, and goblet cell hyperplasia, but not IgE reactivity. Sensitized B cell-deficient mice also developed airway hyperreactivity and lung inflammation comparable to that of wild-type animals, confirming that antibodies were dispensable. Treatment with neutralizing anti-IL-4 antibody or sensitization of IL-4-deficient mice resulted in loss of airway hyperreactivity, whereas treatment with anti-IL-5 antibody or sensitization of IL-5-deficient mice had no effect. CONCLUSIONS: In mice, CD4+ T cells are alone sufficient to mediate many of the pathognomonic changes that occur in human asthma by a mechanism dependent upon IL-4, but independent of IL-5, IgE, or both. Clarification of the role played by CD4+ T cells is likely to stimulate important therapeutic advances in treatment of asthma.  相似文献   

7.
Airway hyperresponsiveness to a variety of specific and nonspecific stimuli is a cardinal feature of asthma, which affects nearly 10% of the population in industrialized countries. Eosinophilic pulmonary inflammation, eosinophil-derived products, as well as Th2 cytokines IL-13, IL-4, and IL-5, have been associated with the development of airway hyperreactivity (AHR), but the specific immunological basis underlying the development of AHR remains controversial. Herein we show that mice with targeted deletion of IL-13 failed to develop allergen-induced AHR, despite the presence of vigorous Th2-biased, eosinophilic pulmonary inflammation. However, AHR was restored in IL-13(-/-) mice by the administration of recombinant IL-13. Moreover, adoptive transfer of OVA-specific Th2 cells generated from TCR-transgenic IL-13(-/-) mice failed to induce AHR in recipient SCID mice, although such IL-13(-/-) Th2 cells produced high levels of IL-4 and IL-5 and induced significant airway inflammation. These studies definitively demonstrate that IL-13 is necessary and sufficient for the induction of AHR and that eosinophilic airway inflammation in the absence of IL-13 is inadequate for the induction of AHR. Therefore, treatment of human asthma with antagonists of IL-13 may be very effective.  相似文献   

8.
To determine whether interleukin-10 (IL-10) could alter the development of grain dust-induced airway disease, we pretreated mice with either saline or IL-10 intravenously, exposed the mice to an inhalation challenge with corn dust extract (CDE), and measured inflammation and the development of airway hyperreactivity. Pretreatment with IL-10, in comparison to saline, reduced the concentration and percentage of polymorphonuclear cells in the lavage fluid 30 min after the inhalation challenge with CDE (P < 0. 05). In comparison to saline-treated mice, IL-10 did not significantly alter the degree of airway hyperreactivity 30 min after the exposure to CDE. IL-10-treated mice lavaged 18 h after challenge with CDE also exhibited a lower percentage of polymorphonuclear cells in the lavage fluid (P < 0.05) and had significantly less airway hyperreactivity than did mice pretreated with the saline placebo (P < 0.05). These findings indicate that exogenous IL-10 is effective in reducing airway inflammation and airway hyperreactivity due to the inhalation of CDE.  相似文献   

9.
Hsu TH  Lai YL  Kou YR 《Life sciences》2000,66(11):971-980
A prior airway exposure to wood smoke induces a tachykinin-dependent increase in airway responsiveness to the subsequent smoke inhalation in guinea pigs (Life Sci. 63: 1513, 1998). To further investigate the time course of, and the contribution of other chemical mediators to, this smoke-induced airway hyperresponsiveness (SIAHR), two smoke challenges (each 10 ml) separated by 30 min were delivered into the lungs of anesthetized guinea pigs by a respirator. In the control animals, the SIAHR was evidenced by the bronchoconstrictive response to the second smoke challenge (SM2) which was approximately 5.2-fold greater than that to the first challenge (SM1). This SIAHR was alleviated by shortening the elapsed time between SM1 and SM2 to 10 min or by extending it to 60 min, and was abolished by extending it to 120 min. This SIAHR was reduced by pretreatment with either MK-571 (a leukotriene D4-receptor antagonist) or dimethylthiourea (a hydroxyl radical scavenger), but was not affected by pretreatment with either pyrilamine (a histamine H1-receptor antagonist) or indomethacin (a cyclooxygenase inhibitor). The smoke-induced reduction in the neutral endopeptidase activity (a major enzyme for tachykinin degradation) measured in airway tissues excised 30 min post SM1 was largely prevented by pretreatment with dimethylthiourea. However, this reduction was not seen in airway tissues excised 120 min post SM1. These results suggest that 1) the SIAHR to inhaled wood smoke has a rapid onset time following smoke inhalation and lasts for less than two hours, 2) leukotrienes and hydroxyl radical may play contributory roles in the development of this SIAHR, and 3) hydroxyl radical is the major factor responsible for the smoke-induced inactivation of airway neutral endopeptidase, which may possibly participate in the development of this SIAHR.  相似文献   

10.
Toxic influence of high oxygen concentration on pulmonary function and structures has been known for many years. However, the influence of high oxygen concentration breathing on defensive respiratory reflexes is still not clear. In our previous experiments, we found an inhibitory effect of 100 % oxygen breathing on cough reflex intensity in healthy guinea pigs. The present study was designed to detect the effects of hyperoxia on cough reflex in guinea pigs with allergic airway inflammation. In the first phase of our experiment, the animals were sensitized with ovalbumin. Thirty-two sensitized animals were used in two separate experiments according to oxygen concentration breathing: 100 % or 50 % oxygen for 60 h continuously. In each experiment, one group of animals was exposed to hyperoxia, another to ambient air. The cough reflex was induced both by aerosol of citric acid before sensitization, then in sensitized animals at 24 h and 60 h of exposition to oxygen/air in awake animals, and by mechanical stimulation of airway mucosa in anesthetized animals just after the end of the experiment. In contrast to 50 % oxygen, 100 % oxygen breathing leads to significant decrease in chemically induced cough in guinea pigs with allergic inflammation. No significant changes were present in cough induced by mechanical stimulation of airways.  相似文献   

11.
In the present study we evaluated the role of neurokinins in the modulation of inducible nitric oxide synthase (iNOS) inflammatory cell expression in guinea pigs with chronic allergic airway inflammation. In addition, we studied the acute effects of nitric oxide inhibition on this response. Animals were anesthetized and pretreated with capsaicin (50 mg/kg sc) or vehicle 10 days before receiving aerosolized ovalbumin or normal saline twice weekly for 4 wk. Animals were then anesthetized, mechanically ventilated, given normal saline or N(G)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg ic), and challenged with ovalbumin. Prechallenge exhaled NO increased in ovalbumin-exposed guinea pigs (P < 0.05 compared with controls), and capsaicin reduced this response (P < 0.001). Compared with animals inhaled with normal saline, ovalbumin-exposed animals presented increases in respiratory system resistance and elastance and numbers of total mononuclear cells and eosinophils, including those expressing iNOS (P < 0.001). Capsaicin reduced all these responses (P < 0.05) except for iNOS expression in eosinophils. Treatment with l-NAME increased postantigen challenge elastance and restored both resistance and elastance previously attenuated by capsaicin treatment. Isolated l-NAME administration also reduced total eosinophils and mononuclear cells, as well as those cells expressing iNOS (P < 0.05 compared with ovalbumin alone). Because l-NAME treatment restored lung mechanical alterations previously attenuated by capsaicin, NO and neurokinins may interact in controlling airway tone. In this experimental model, NO and neurokinins modulate eosinophil and lymphocyte infiltration in the airways.  相似文献   

12.
Reactive oxygen species produced during allergic inflammation are key players of the pathophysiology of asthma, leading to oxidative tissue injury and inactivation of endogenous manganese superoxide dismutase (MnSOD). On this ground, removal of excess superoxide anion by scavenger molecules would be beneficial and protective. Here we show that a novel manganese(II)-containing polyamine-polycarboxylic compound, termed MnII(Me2DO2A), with potent superoxide dismuting properties decreases the respiratory and histopathological lung abnormalities due to allergen inhalation in a model of ovalbumin (OA)-induced allergic asthma-like reaction in sensitized guinea pigs.Severe respiratory dysfunction in response to OA aerosolic challenge arose rapidly in the sensitized animals and was accompanied by bronchoconstriction, alveolar hyperinflation, mast cell activation, increased leukocyte infiltration (evaluated by myeloperoxidase assay), oxidative lung tissue injury (evaluated by the thiobarbituric-acid-reactive substances and nitrotyrosine immunostaining), decay of endogenous MnSOD activity, production of pro-inflammatory prostaglandins, and lung cell apoptosis. Treatment with MnII(Me2DO2A) (15 mg/kg, given 1 h before allergen challenge), but not the inactive congener ZnII(Me2DO2A) lacking redox-active metal site, significantly attenuated all the above functional, histopathological and biochemical parameters of allergic inflammation and restored the levels of MnSOD activity. In conclusion, our findings support the potential therapeutic use of MnII(Me2DO2A) as novel superoxide scavenger drug in asthma and anaphylactic reactions.  相似文献   

13.
The antiallergic efficacy of the selective leukotriene synthesis inhibitor, piriprost, was evaluated in two models of airway anaphylaxis in sensitized guinea pigs. Contractions of lung strips evoked by cumulative challenge with allergen were resistant to mepyramine and enhanced by indomethacin. On the other hand, piriprost shifted the dose-response curve markedly to the right, causing more than 50 % inhibition at the highest dose of allergen. The bronchoconstrictor response evoked by cumulative challenge with aerosols of allergen in anesthetized animals, also enhanced by indomethacin, had a distinct mepyramine-sensitive component. Aerosols of piriprost blocked almost completely the allergic bronchoconstriction remaining after indomethacin and mepyramine. These findings indicate that leukotrienes, but not cyclooxygenase products, are major mediators of the acute airway response to allergen in guinea pigs.  相似文献   

14.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

15.
Granulocyte-mediated airway edema in guinea pigs   总被引:2,自引:0,他引:2  
To determine the role of polymorphonuclear leukocytes (PMNs) in the airway edema that accompanies airway inflammation, we studied the effects of a 1-h exposure to 2 ppm toluene diisocyanate (TDI) on tracheal extravasation of Evans blue dye and on the concentration of PMNs in the tracheal wall. Tracheal Evans blue content was significantly increased by TDI exposure (53.6 +/- 8.0 micrograms/g tracheal tissue (mean +/- SE) for animals exposed to TDI and 16.3 +/- 2.0 for animals exposed to air, P less than 0.0025) as were both the intravascular and extravascular concentration of PMNs in tracheal sections (intravascular PMNs were 28.0 +/- 8.4 X 10(3) cells/mm3 for TDI and 1.5 +/- 1.5 X 10(3) for air, P less than 0.025, extravascular PMNs were 10.9 +/- 4.5 X 10(3) for TDI and 0 for air, P less than 0.05). PMN depletion with vinblastine or with hydroxyurea abolished both the increase in tracheal Evans blue extravasation and the increase in the concentration of intravascular and extravascular PMNs in animals exposed to TDI. PMN depletion with hydroxyurea did not significantly inhibit the increase in tracheal Evans blue extravasation caused by intravenous histamine. Administration of donor PMNs to animals depleted of PMNs with hydroxyurea reconstituted the TDI-induced increase in tracheal Evans blue extravasation (80.4 +/- 17.3 micrograms/g tissue (mean +/- SE) in animals exposed to TDI vs. 21.3 +/- 2.9 in animals exposed to air, P less than 0.025) and in the intravascular concentration of PMNs in tracheal sections [18.5 +/- 3.4 X 10(3) cells/mm3 (mean +/- SE) in animals exposed to TDI vs. 1.3 +/- 1.3 X 10(3) in animals exposed to air, P less than 0.0025].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Matrix metalloproteinases (MMPs) are involved in inflammatory reaction, including asthma-related airway inflammation. MMP-8, mainly produced by neutrophils, has recently been reported to be increased in the bronchoalveolar lavage fluid (BALF) from asthmatic patients. To evaluate the role of MMP-8 in asthma, we measured MMP-8 expression in lung tissue in an OVA-sensitized mouse model of asthma and addressed the effect of MMP-8 deletion on allergen-induced bronchial inflammation. MMP-8 production was increased in lungs from C57BL/6 mice exposed to allergens. After allergen exposure, MMP-8(-/-) mice developed an airway inflammation characterized by an increased neutrophilic inflammation in BALF and an increased neutrophilic and eosinophilic infiltration in the airway walls. MMP-8 deficiency was associated with increased levels of IL-4 and anti-OVA IgE and IgG1 in BALF and serum, respectively. Although allergen exposure induced an enhancement of LPS-induced CXC chemokine, KC, and MIP-2 levels in BALF and lung parenchyma, no difference was observed between the two genotypes. Inflammatory cell apoptosis was reduced in the lungs from MMP-8(-/-) mice. For the first time, our study evidences an important role of MMP-8 in the control of neutrophilic and eosinophilic infiltration during allergen-induced lung inflammation, and demonstrates that the anti-inflammatory effect of MMP-8 is partly due to a regulation of inflammatory cell apoptosis.  相似文献   

17.
Insulin-like growth factor (IGF)-I is known to act on fibroblasts as a progression factor to push cells toward proliferation and activation to synthesize collagen. Subepithelial fibrosis, collagen deposition at the lamina reticularis, is part of the process of so-called remodeling and is a characteristic finding in the asthmatic airway. To study the role of IGF in the evolution of asthma, we used a model that involved immunization of mice with ovalbumin and alum, followed by an inhaled challenge of ovalbumin. IGF-I neutralizing antibody was continuously infused with an osmotic pump. Pulmonary function was analyzed using whole-body plethysmography before and after acetylcholine administration. It was found that OVA inhalation induced IGF-I expression at the site of the airway. IGF-I neutralizing Ab inhibited the elevation of airway resistance, airway inflammation, and an increase in airway wall thickening. The depression of ICAM-1 expression was accompanied by a diminution in airway inflammation. In conclusion, these results suggest that IGF-I is likely to be an important mediator of inflammation and remodeling in the asthmatic airway.  相似文献   

18.
Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4(+) T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-gamma knockout mice pointing to the essential role of IFN-gamma in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4(+) T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-gamma-producing cells or cells dependent on IFN-gamma activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.  相似文献   

19.
Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.  相似文献   

20.
Luo YL  Yang JJ  Gao W 《生理科学进展》2003,34(4):339-342
血红素氧合酶(HO)通过降解血红素产生一氧化碳(CO)、胆绿素和铁离子。CO是继一氧化氮(NO)之后发现的另一种具有重要生理作用的气体分子,具有调节血管张力、抑制血管平滑肌细胞增殖、抑制血小板聚集等效应;胆绿素和铁蛋白具有抗氧化和细胞保护作用。具有可诱导性的HO-1在心血管疾病尤其是在动脉粥样硬化及血管成形术后再狭窄中有重要的病理生理意义。HO-1的调控可能成为动脉粥样硬化防治的新手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号