首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of daily intracerebroventricular (ICV) leptin administration (neonatal age 2-7 days) on hypothalamic neuropeptides (neuropeptide Y, alpha-melanocyte-stimulating hormone) that regulate food intake, body weight (BW) gain, and the metabolic/hormonal profile in suckling (8 and 21 days) and adult rat (35, 60, 90, and 120 days). ICV leptin (0.16 mug.g BW(-1).dose(-1); n = 70) led to a postnatal decline in BW (P = 0.0002) that persisted only in the adult females (P = 0.002). The postnatal decline in BW due to leptin was associated with a decline in food intake (P = 0.01) and hypothalamic leptin receptor (P = 0.008) and neuropeptide Y (P = 0.008) immunoreactivities and an increase in alpha-melanocyte-stimulating hormone (P = 0.008) immunoreactivity. In addition, hyperinsulinemia (P = 0.01) with hypocorticosteronemia (P = 0.007) occurred during the postnatal period with hypercorticosteronemia (P = 0.007) and hypoleptinemia (P = 0.008) and an increase in leutinizing hormone (P = 0.01) in the adult male and female progeny. Persistent hyperinsulinemia (P = 0.015) with hyperglycemia (P = 0.008) and glucose intolerance (P = 0.001) were observed only in the adult female. We conclude that postnatal leptin administration alters the adult female phenotype and speculate that this may relate to retention of leptin sensitivity resulting in a lipoatrophic state.  相似文献   

2.
Chronic perinatal intermittent hypoxia (IH) could have long-term cardiovascular effects by altering baroreflex function. To examine this hypothesis, we exposed rats (n = 6/group) for postnatal days 1-30 or prenatal embryonic days 5-21 to IH (8% ambient O2 for 90 s after 90 s of 21% of O2, 12 h/day) or to normoxia (control). Baroreflex sensitivity (BRS) and cardiac chronotropic responses were examined in anesthetized animals 3.5-5 mo later by infusing phenylephrine or sodium nitroprusside (6-12 microg/min iv, 1-2 min) during normoxia and after 18 min of acute IH (IHA). In controls after IHA, baroreflex gain was 42% (P < 0.05) less than during normoxia. BRS in the postnatal IH group during normoxia was approximately 50% less than in control rats and similar to controls after IHA. The heart rate response to phenylephrine in the IH group was also less than in controls (P < 0.05) and was not changed by IHA. BRS and heart rate responses in the prenatal IH group were similar to the normoxic control group. Vagal efferent projections to atrial ganglia neurons in rats after postnatal IH (n = 4) were examined by injecting tracer into the left nucleus ambiguous. After 35 days of postnatal IH, basket ending density was reduced by 17% (P < 0.001) and vagal axon varicose contacts by 56% (P < 0.001) compared with controls. We conclude that reduction of vagal efferent projections in cardiac ganglia could be a cause of long-term modifications in baroreflex function.  相似文献   

3.
The aim of this experiment was to determine if maternal exposure to octylphenol pre- and/or postnatally influenced FSH concentrations and semen quantity and quality in postpubertal rams. Rams were born to ewes that received twice-weekly s.c. injections of octylphenol equivalent to 1000microg/kg/day for one of the following periods: (1) day 70 of gestation (D70) to weaning (at 20 weeks postnatally; n=4); (2) D70 to birth (n=6); (3) birth to weaning (n=7), controls received corn oil from D70 to weaning (n=5). Rams were blood-sampled weekly and semen characteristics were evaluated at 1 year of age. Maternal exposure to octylphenol, pre- and/or postnatally did not affect FSH concentrations, semen volume, concentration, percentage live, motility or IVM/IVF characteristics. However, exposure to octylphenol from birth to weaning increased the number of morphologically abnormal sperm cells in the ejaculates of these rams.  相似文献   

4.
Treatment of the pregnant ewe with glucocorticoids early in pregnancy results in offspring with hypertension. This study examined whether glucocorticoids can reduce nephron formation or alter gene expression for sodium channels in the late gestation fetus. Sodium channel expression was also examined in 2-mo-old lambs, while arterial pressure and renal function was examined in adult female offspring before and during 6 wk of increased dietary salt intake. Pregnant ewes were treated with saline (SAL), dexamethasone (DEX; 0.48 mg/h) or cortisol (CORT; 5 mg/h) over days 26-28 of gestation (term = 150 days). At 140 days of gestation, glomerular number in CORT and DEX animals was 40 and 25% less, respectively, compared with SAL controls. Real-time PCR showed greater gene expression for the epithelial sodium channel (α-, β-, γ-subunits) and Na(+)-K(+)-ATPase (α-, β-, γ-subunits) in both the DEX and CORT group fetal kidneys compared with the SAL group with some of these changes persisting in 2-mo-old female offspring. In adulthood, sheep treated with dexamethasone or cortisol in utero had elevated arterial pressure and an apparent increase in single nephron glomerular filtration rate, but global renal hemodynamics and excretory function were normal and arterial pressure was not salt sensitive. Our findings show that the nephron-deficit in sheep exposed to glucocorticoids in utero is acquired before birth, so it is a potential cause, rather than a consequence, of their elevated arterial pressure in adulthood. Upregulation of sodium channels in these animals could provide a mechanistic link to sustained increases in arterial pressure in cortisol- and dexamethasone-exposed sheep, since it would be expected to promote salt and water retention during the postnatal period.  相似文献   

5.
The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.  相似文献   

6.
We investigated the effect of repetitive postnatal (2-7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50-85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a approximately 20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the approximately 120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.  相似文献   

7.
Neonatal maternal separation alters learning and memory. Glucocorticoids also modulate adult learning and memory, and neonatal maternal separation alters forebrain glucocorticoid receptor (GR) concentrations. We used eyeblink classical conditioning to assess the effect of neonatal maternal separation on associative learning. We assessed delay eyeblink conditioning, GR expression, and total neuron number in the interpositus nucleus, a critical site of plasticity in eyeblink conditioning, in adult rats that had undergone either standard animal facilities rearing, handling for 15 min, or maternal separation for either 15 or 60 min per day on postnatal days 2-14. At 2-3 months of age, delay eyeblink classical conditioning was assessed. Brains were processed for GR immunohistochemistry, and GR expression in the interpositus nucleus was assessed using a computer-based densitometry system. Neuron counts and nuclear volumes were obtained from an alternate series of thionin-stained sections. Maternal separation significantly impaired eyeblink conditioning in male but not female rats. Handling and maternal separation did not significantly affect interpositus neuron number and volume. However, prolonged maternal separation significantly increased GR expression in the posterior interpositus in males, and increases were correlated with eyeblink conditioning. In female rats, maternal separation and handling did not significantly alter interpositus neuron number, volume, or GR protein expression, and GR expression did not correlate with eyeblink conditioning. Thus, neonatal maternal separation produces adult deficits in eyeblink conditioning and alterations in GR expression in its neural substrate in a sex-dependent manner.  相似文献   

8.
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the “helminthome”) provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.  相似文献   

9.
Administration of monosodium glutamate (MSG) during the neonatal period in rats produced differential effects on the contents of various neuropeptides in the hypothalamus: beta-endorphin (beta-E) level was reduced by 70% while substance P (SP), neurotensin (NT) and Met5-enkephalin (ME) levels were not significantly changed (ME content of male rats was slightly reduced). The contents of ME, SP and NT in striatum and hippocampus were also unaffected by the same treatment. Male rats contain higher pituitary content of beta-endorphin-like immunoreactivity (beta-ELI) than female rats. MSG treatment reduced the pituitary content of beta-ELI and abolished the sex difference in beta-ELI level seen in the control rats. MSG treatment in the neonates by eliminating beta-E neurons while sparing ME neurons in the brain may be a useful tool for studying the different functions of these two separate opioid peptides.  相似文献   

10.
The specific binding of [3H]-dexamethasone to glucocoticoid receptor (GR) and activation of hormone-receptor (H-R) complexes from the liver of chicken at day 0, 5, 10, 30, 60 and 90 were investigated to find out GR regulation during postnatal development. Results showed that GR level (fmol/mg protein) reached a peak by day 5 of postnatal age and was significantly higher (+ 42%) than observed at day-0 (day of hatching), as evidenced also by protein blot experiments and Scatchard analysis of binding data. The GR concentration declined gradually up to day 30, and thereafter, no significant change was observed at day 60 and 90 of postnatal ages. The temperature and salt-dependent activation of GR showed no significant differences in 0 and 30-day old chicken, as determined by DNA-cellulose binding assay. However, nuclear binding of temperature and salt-activated GR complexes was significantly higher in 0-day old chicken. Cross-mixing experiments (wherein nuclei of day-0 were incubated with the H-R complexes of day-30 and vice-versa) revealed the role of nuclear specificity in higher binding of temperature and salt-activated H-R complexes at day-0 of postnatal age. DNase I extraction of nuclei bound to activated H-R complexes showed higher extractability at day-0 (70%), compared to day-30 (44%). Above findings suggested that changes in GR concentration as well as chromatin organization might play an important role in glucocorticoid-mediated responses during postnatal development of chicken.  相似文献   

11.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect.  相似文献   

12.
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11beta-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11beta-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.  相似文献   

13.
14.
We examined the effect of hypoxic ischemia and hypoxia vs. normoxia on postnatal murine brain substrate transporter concentrations and function. We detected a transient increase in the neuronal brain glucose transporter isoform (GLUT-3) in response to hypoxic ischemia after 4 h of reoxygenation. This increase was associated with no change in GLUT-1 (blood-brain barrier/glial isoform), monocarboxylate transporter isoforms 1 and 2, synapsin I (neuronal marker), or Bax (proapoptotic protein) but with a modest increase in Bcl-2 (antiapoptotic mitochondrial protein) protein concentrations. At 24 h of reoxygenation, the increase in GLUT-3 disappeared but was associated with a decline in Bcl-2 protein concentrations and the Bcl2:Bax ratio, an increase in caspase-3 enzyme activity (apoptotic effector enzyme), and extensive DNA fragmentation, which persisted later in time (48 h) only in the hippocampus. Hypoxia alone in the absence of ischemia was associated with a transient but modest increase in GLUT-3 and synapsin I protein concentrations, which did not cause significant apoptosis and/or necrosis. Assessment of glucose transporter function by 2-deoxyglucose (2-DG) uptake using two distinct techniques, namely positron emission tomography (PET) and the modified Sokoloff method, revealed a discrepancy due to glucose uptake by extracranial Harderian glands that masked the accurate detection of intracranial brain glucose uptake by PET scanning. The modified Sokoloff method assessing 2-DG uptake revealed that the transient increase in GLUT-3 was critical in protecting against a decline in brain glucose uptake. We conclude that hypoxic-ischemic brain injury is associated with transient compensatory changes targeted at protecting glucose delivery to fuel cellular energy metabolism, which then may delay the processes of apoptosis and cell necrosis.  相似文献   

15.
16.
The hemoglobin minor/hemoglobin major ratio expressed in mouse erythroleukemia (MEL) cells grown in vitro varies according to the differentiation inducer utilized. For example, butyrate and hemin induce higher hemoglobin minor/hemoglobin major ratios than do dimethyl sulfoxide (DMSO) or hexamethylene bisacetamide (HMBA). Benzyl alcohol in non-toxic concentrations was found to markedly reduce the hemoglobin minor/hemoglobin major ratio and to moderately reduce the total hemoglobin induced by DMSO or HMBA in MEL cells, while only slightly decreasing the ratio induced by hemin or butyrate. The addition of dexamethasone (another and more potent inhibitor of the induction of hemoglobin synthesis than benzyl alcohol) to the media during HMBA induction of differentiation increased the hemoglobin minor/hemoglobin major ratio. This is similar to other "inhibitory" treatments (i.e., treatments that result in sub-optimal hemoglobin production) that have been previously reported. Therefore, although benzyl alcohol and dexamethasone both partly inhibit the induction of total hemoglobin production, they have opposite effects on the induced hemoglobin phenotype: benzyl alcohol decreases the hemoglobin minor/hemoglobin major ratio while dexamethasone increases it. The mechanism(s) of the alteration in the hemoglobin phenotype is unknown as is the mechanism of induction by any of the various inducing agents or of the inhibition of induction by any treatment. However, it appears that if the signal for the induction of hemoglobin minor is sufficiently potent (as it is during butyrate or hemin induction), it cannot be overcome by benzyl alcohol at a "non-toxic" concentration.  相似文献   

17.
Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE(2)) on bone geometry and torsional strength. C57BL/6 mice were exposed to DES, 0.1 μg/kg/day, BPA, 10 μg/kg/day, EE(2), 0.01, 0.1, or 1.0 μg/kg/day, or vehicle from Gestation Day 11 to Postnatal Day 12 via a mini-osmotic pump in the dam. Developmental Xenoestrogen exposure altered femoral geometry and strength, assessed in adulthood by micro-computed tomography and torsional strength analysis, respectively. Low-dose EE(2), DES, or BPA increased adult femur length. Exposure to the highest dose of EE(2) did not alter femur length, resulting in a nonmonotonic dose response. Exposure to EE(2) and DES but not BPA decreased tensile strength. The combined effect of increased femur length and decreased tensile strength resulted in a trend toward decreased torsional ultimate strength and energy to failure. Taken together, these results suggest that exposure to developmental exposure to environmentally relevant levels of xenoestrogens may negatively impact bone length and strength in adulthood.  相似文献   

18.
At birth, lung fluid clearance is coupled to Na+ transport through epithelial Na+ channels (ENaC) in the distal lung epithelium. We evaluated the effect of postnatal glucocorticoids (GC) on lung alpha-ENaC expression in preterm 29-day gestational age (GA) fetal rabbits. Postnatal treatment of 29-day GA fetuses with 0.5 mg/kg of dexamethasone (Dex) iv resulted in a 2- and 22-fold increase in lung alpha-ENaC mRNA expression compared with saline-treated fetuses after 8 and 16 h, respectively. Lung alpha-ENaC protein levels in Dex-treated fetuses were also elevated compared with saline-treated counterparts. The extravascular lung water (EVLW)/dry lung tissue weight ratios of 29-day GA fetuses treated with either saline or Dex decreased over 24 h compared with that observed at birth; however, at 24 h, the EVLW/dry lung tissue weight ratios of saline- and Dex-treated fetuses were similar. Dex-induced alpha-ENaC mRNA and protein levels were attenuated by glucocorticoid receptor (GCR) antagonist RU-486 in fetal distal lung epithelial cells isolated from 29-day GA fetuses, indicating that GC-dependent augmentation of lung alpha-ENaC requires the presence of functional GCR. Lung GCR mRNA expression and protein levels were elevated in 29-day GA fetuses compared with fetuses at earlier GA. Exposure of 29-day GA fetuses to Dex for 16 h caused a 2.1-fold increase in lung GCR mRNA expression, but GCR protein levels were decreased in Dex-treated fetuses after 24 h. We conclude that postnatal treatment of preterm 29-day GA fetal rabbits with GC results in an elevation of lung alpha-ENaC accompanied by an autoregulation of pulmonary GCR.  相似文献   

19.
A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague–Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress + Vehicle, 2) No Stress + Fluoxetine, 3) Prenatal Stress + Vehicle, and 4) Prenatal Stress + Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect–related behaviors and their underlying molecular mechanisms.  相似文献   

20.
After neonatal administration of supraphysiological doses of oestradiol, the concentration of tissue proteins, in adult mice, was significantly reduced by 39, 45 and 56% in epididymis, vas deferens and seminal vesicle respectively. The protein profiles showed persistent alterations. In epididymis, 4 protein bands were differentially increased (14.4, 43 and 67 kDa) or reduced (24 kDa) in oestrogenized males. In vas deferens, 4 proteins were increased (14.4, 49,67 and 76 kDa) and one (34 kDa) virtually absent. In seminal vesicle, about 20 proteins of varying molecular weights (12-140 kDa) were differentially increased or decreased. Testosterone substitution, at adulthood, was unable to reverse these effects. Treatments with oestradiol during adult life induced persistent alterations in the protein profiles of the 3 organs but, in contrast to neonatal treatment, these alterations could be reversed by androgen therapy. A cDNA library has been constructed with RNA prepared from adult seminal vesicle and screened by differential hybridization. Neonatal oestrogenization strongly reduced the abundance of some mRNA species. Eleven recombinants containing putative oestrogen-sensitive sequences were isolated. Two of them, having an insert of about 500 base pairs, were used for dot-blot hybridization. Results showed that the two clones contained sequences which were differently regulated by androgens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号