首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser photolysis experiments on carboxymethylated chitin derivatives, such as carboxymethyl chitin (CM-chitin) and carboxymethyl chitosan (CM-chitosan), in aqueous solution by a 248 nm excimer laser were carried out for the first time. The transient absorption spectra of photolyzed CM-chitin or CM-chitosan solutions revealed a strong band with the maximum at 720 nm, which was assigned to the hydrated electron (eaq-). In the presence of argon, the eaq- decays by reacting with CM-chitin or CM-chitosan, and the rate constants are (6.1 +/- 0.1) x 10(7) M(-1) s(-1) and (3.7 +/- 0.1) x 10(7) M(-1) s(-1), respectively. Long-lived radicals with relatively weak absorption intensity were detected in the near-UV region. The absorption band was not notably characteristic and showed only an increasing absorption toward shorter wavelengths. It is similar to the signal of *CM-chitin or *CM-chitosan macroradicals formed by the reaction of CM-chitin or CM-chitosan with an OH* radical. It was assigned to *CM-chitin- or *CM-chitosan- macroradicals formed by eaq- + CM-chitin or CM-chitosan reaction. CM-chitin aqueous solutions were further examined by pulse radiolysis in order to confirm the site of the long-lived radical.  相似文献   

2.
3.
Aqueous solution ofD-ribose (10?2M) saturated with N2O and N2O/O2 (4/1) were γ-irradiated (dose rate: 3.85 x 1018 eV.g?1.h?1) at room temperature. The following products were identified:D-ribonic acid (1). D-erythro-pentos-2-ulose (2). D-erythro-pentos-4-ulose (3),D-erythro-pentos-3-ulose (4), D-ribo-pentodialdose (5), 2-deoxy-D-erythro-pentonic acid (6), 2-deoxypentos-3-ulose (7)(7), 4-deoxylpentos-3-ulose (8), 3-deoxypentos-4-ulose (9), 3-deoxypentos-2-ulose (10), 5-deoxypentos-4-ulose (11), erythrose (12), erythro-tetrodialdose (13), erythronic acid (14), threose/erythrulose (15). threonic acid (16), 2-deoxytetrose (17), and glyceraldehyde (18). In deoxygenated solutions, 13, 14, and 16 were absent. In the presence of oxygen, the formation of 611 and 17 was suppressed. From quantitative measurements, G-values were calculated for both deoxygenated and oxygenated conditions. Five different, primary, ribosyl radicals are formed which, in deoxygenated solution, undergo disproportionation reactions (to give 1-5), and transformations such as elimination of water and carbon monoxide followed by disproportionation reactions (to give6-12.17). Material-balance considerations indicate the formation of dimers (not measured). In oxygenated solutions, oxygen rapidly adds to the primary ribosyl radicals, thus preventing the transformation reactions, and the main products are 15 and 13. Possible mechanistic routes are discussed. The attack of HO radicals on D-ribose involves C-1, ~20%; C-2 and C-4, ~35%: C-3, ~ 20%; and C-5, ~25%  相似文献   

4.
5.
6.
To improve water solubility and specific affinity for malignant tumors, glycoconjugated hypocrellin B (GHB) has been synthesized. Illumination of deoxygenated DMSO solution containing GHB generates a strong electron paramagnetic resonance (EPR) signal. The EPR signal is assigned to the semiquinone anion radical of GHB (GHB*-) based on a series of experimental results. Spectrophotometric measurements show that the absorption bands at 645 nm and 502 nm (pH 8.0) or 505 nm (pH 11.0) arise from the semiquinone anion radical (GHB*-) and hydroquinone (GHBH2) of GHB, respectively. GHBH2 is readily formed via the decay of GHB*- in water-contained solution. The increase of pH value of the reaction media promotes this process. When oxygen is present, superoxide anion radical (O2*-) is formed, via the electron transfer from GHB*-, the precursor, to ground state molecular oxygen. Hydroxyl radical can be readily detected by DMPO spin trapping when aerobic aqueous solution containing GHB is irradiated. As compared with the parent compound, hypocrellin B (HB), the efficiency of O2* and *OH generation by GHB photosensitization is enhanced significantly. Singlet oxygen (1O2) can be produced via the energy transfer from triplet GHB to ground state oxygen molecules, with a decreased quantum yield, i.e., 0.19. These findings suggest that the new GHB possesses an enhanced type I process and a decreased type II process as compared with hypocrellin B.  相似文献   

7.
It has been shown that the quantum yield of the photochemical conversion of adenine and the corresponding nucleosides and nucleoside 5'-phosphates in liquid (pH 5.6 and 2.0) and frozen aqueous solutions do not exceed 10(-4). The quantum yield of the photoconversion of guanine-containing nucleosides and nucleoside 5'-phosphates in liquid aqueous solution (pH 5.6) after removal of oxygen by passing through nitrogen and in the frozen state do not exceed 0.3 x 10(-4). The quantum yield in oxygen-containing liquid aqueous solutions increase to 0.3 x 10(-3), i.e. to values commensurate with the quantum yield of pyrimidine photolysis.  相似文献   

8.
In order to obtain information concerning the mechanism of radio- and photosensitization due to 5-halogen substituted nucleic acid constituents, the free radicals produced in iodo-, bromo-, chloro- and fluoro-derivatives of uracil, uridine and deoxyuridine by reaction with hydrated electrons and with hydroxyl radicals and by direct U.V. photolysis have been studied by e.s.r. and spin-trapping. t-Nitrosobutane was used as the spin-trap. From 5-halogenated bases (except 5-fluorouracil) U.V. photolysis and reactions with hydrated electrons produced the uracilyl radical which was subsequently spin-trapped. When hydroxyl radical reactions were studied, the free radical at the N(1) position of the base was identified. From 5-fluorouracil U.V. photolysis generated the alpha-halo radical at the C(5) position of the base. For 5-halogenated ribonucleosides and deoxyribonucleosides, free radicals located on the sugar moiety were observed for reactions with hydrated electrons, hydroxyl radicals and for U.V. photolysis. The implications of these results for understanding the mechanism of radio- and photosensitization by 5-halogenated nucleic acids are discussed.  相似文献   

9.
The technique of pulse radiolysis with spectrophotometric detection has been used to investigate the possibility of electron transfer reactions between oxidizing sulfur-sulfur three-electron-bond complexes (Met2/S thereforeS+), or reducing alpha-amino radicals (CH3SCH2CH2CH.NH2) derived from reaction of methionine with OH radicals and hydroxycinnamic acid (HCA) derivatives, riboflavin (RF) or flavin adenine dinucleotide (FAD), respectively. The HCA derivatives, such as caffeic acid, ferulic acid, sinapic acid and chlorogenic acid, widely distributed phenolic acids in fruit and vegetables, have been identified as good antioxidants previously can rapidly and efficiently repair oxidizing three-electron-bond complexes via electron transfer. RF and FAD can oxidize reducing alpha-amino radicals derived from methionine. The electron transfer rate constants approximately 10(9) dm3 x mol(-1)x s(-1) were determined by following the build-up kinetics of species produced.  相似文献   

10.
NaOH/urea aqueous solution has been used as a solvent for chitin for the first time. Effects of this solvent composition and temperature on the solubility and stability of chitin solution were studied with an optical microscope, from which 8 wt% NaOH/4 wt% urea concentrations were deduced as suitable and −20 °C as the appropriate temperature. The original and regenerated chitin were characterized by viscosity, elemental analysis, FI-IR and X-RD analysis, and the effect of solvent composition and temperature on chitin structure was investigated. It was inferred that 8 wt% NaOH/4 wt% urea solvent under low temperature adventitiously has little effect on chitin structure and the urea is of benefit to the stability of chitin solution. In addition, the rheological properties suggested that chitin aqueous solution in high concentration is a pseudoplastic fluid and that chitin aqueous solution in low concentrations is a Newtonian fluid. This chitin aqueous solution is sensitive to temperature and will transform it to a gel when temperature increases.  相似文献   

11.
12.
Free radicals formed by the reactions of OH radicals with amides and their N-methylated derivatives in aqueous solutions have been studied. The OH radicals were produced by U.V.-photolysis of H2O2, and the short-lived amide radicals were converted to more stable nitroxide radicals by addition to a spin-trap, tert-nitrosobutane. The spin-trapped radicals were identified by e.s.r. spectroscopy. For acetamide, chloroacetamide, malonamide, succinamide and propionamide, the observed radicals were formed by H-abstraction from the carbon atoms attached to the carbonyl group. The H atom attached to the carbonyl group was abstracted in formamide. For N-methyl acetamide, N,N-dimethyl acetamide and the corresponding formamide derivatives, H-abstraction occurred only from the N-methyl group. The non-equivalency of the amide protons was observed in the spin-trapped radicals for acetamide, formamide, malonamide, succinamide and propionamide. The identification of the site of OH attack on N-methyl amides is helpful for the study of radical formation in peptides and proteins.  相似文献   

13.
The aim of our study was to determine the oxysterol formation in low density lipoproteins (LDLs) oxidized by defined oxygen free radicals (*OH/O2*-). This was compared to the oxysterol produced upon the classical copper oxidation procedure. The results showed a markedly lower formation of oxysterols induced by *OH/O2*- free radicals than by copper and thus suggested a poor ability of these radicals to initiate cholesterol oxidation in LDLs. Moreover, the molecular species of cholesteryl ester hydroperoxides produced by LDL copper oxidation seemed more labile than those formed upon *OH/O2*(-)-induced oxidation, probably due to their degradation by reaction with copper ions.  相似文献   

14.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

15.
Water-soluble and white quaternized chitin (QC) was homogeneously synthesized by stirring transparent chitin solution (2%) in 8 wt%NaOH/4 wt% urea aqueous solution containing 2,3-Epoxypropyltrimethylammonium Chloride (EPTMAC) at 10 °C for 24 h. The structure and properties of quaternized chitin were characterized by FT-IR, XRD, 1H NMR, GPC, element analysis and ζ-potential. The results indicate that quaternary groups were successfully incorporated onto chitin backbones and the degree of substitution (DS) of quaternary groups can be easily adjusted by changing the molar ratio of chitin unit to EPTMAC. Additionally, quaternized chitin shows better antibacterial activity against Escherichia coli and Staphylococcus aureus as compared with chitosan. Thus, this work provides a simply and “green” method to functionalize chitin and the resulting quaternized chitin may have potential applications in environmental, food and biomedical fields.  相似文献   

16.
R Ahmad  Z Wu  D A Armstrong 《Biochemistry》1983,22(8):1806-1810
The kinetics of reaction of oxidized lumiflavin (F0) with the radicals .CO2(-), CH3CHOH, and (CH3)2COH have been investigated at pH 7 and 24 +/- 1 degree C by the pulse radiolysis technique. The radicals have been shown to react with lumiflavin with second-order rate constants of 36 +/- 4, 26 +/- 3, and 20 +/- 3 in units of 10(8) M-1 s-1, respectively. These rate constants are close to the diffusion limit. The main product in each case was the lumiflavin semiquinone radical FH.. By utilization of long pulses (approximately 100 mus), it was shown that the reaction FH. + .AH(alpha) leads to FH- + A(alpha) + H+ [.AH(alpha) = .CO2(-), CH3CHOH, or (CH3)2COH] proceeded for all three types of .AH(alpha) radical with second-order rate constants of 17 (+4,-3), 9 (+5,-3), and 9 (+4,-3), respectively, in the above units. The beta-carbon radical .CH2CH(OH)CH3 added to .FH, forming an alkylated flavin, while the .CH2CH2OH radical appeared to be capable of addition or hydrogen atom donation to .FH.  相似文献   

17.
The photoreactions of tris(2,2′-bipyridine)nickel(II) complex, Ni(II)(bpy3)2+ were studied and compared with that of the photoreactions of 2,2′-bipyridine ligand. Continuous photolysis of the complex shows that the photodecomposition corresponds to the absorption of light by the complex in the ligand centered excited state. Flash photolysis of the complex using a 248 nm excimer laser yields bipyridine cation radical and solvated electron as transients. Absorption spectra of the transient observed for the complex is found to be similar to that observed for the ligand on flash excitation using a 248 nm laser suggesting that the transients observed in the case of complex is due to the coordinated bipyridine in the complex. The formation of solvated electron is observed to be monophotonic and that of the bipyridine cation radical is found to be a biphotonic process. Significant change in Ni-N bond distance upon oxidation of Ni(bpy3)2+ ion when compared to that observed in nickel(II)tetraazamacrocyclic complexes suggests that the formation of the trivalent complex by photolysis is not favored for the Ni(bpy3)2+ ion and CTTS excited state in the complex is not observed in the present system.  相似文献   

18.
19.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

20.
To spin trap hydroxyl radical (HO*) with in vivo detection of the resultant radical adducts, the use of two spin traps, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) (10 mmol/kg) has been compared. In mice treatment with 5-aminolevulinic acid and Fe3+ resulted in detection of adducts of hydroxyl radicals (HO*), but only with use of DEPMPO. Similarly, 'HO* adducts' generated via nucleophilic substitution of SO4*- adducts formed in vivo could be observed only when using DEPMPO as the spin trap. The reasons for the differences observed between DEPMPO and DMPO are likely due to different in vivo lifetimes of their hydroxyl radical adducts. These results seem to be the first direct in vivo EPR detection of hydroxyl radical adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号