首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用细胞内微电极技术记录到37个培养大鼠搏动心肌细胞充氮前后和复氧后的电活动参数。结果提示:充氮10min后,最大舒张电位(MDP),最大除极速度(V_(max)),动作电位振幅(APA)和动作电位时程(APD)等参数明显降低;自发节律增快,并出现多种形式的节律失常。83.8%细胞在充氮后30min内停搏,16.2%在50min左右停搏。复氧后,86.5%细胞在5min内复跳,13.5%未能复跳;12.5%复跳细胞在复跳10min内再次停搏。复跳细胞的各项电活动参数在30min内未能恢复到充氮前水平(p<0.05),且呈现不同程度的各类异常电活动。本结果对进一步研究心肌细胞缺氧和复氧损伤有一定意义。  相似文献   

2.
Fang P  Zang WJ  Yu XJ  Sun Q  Zang YM  Lu J 《生理学报》2002,54(4):311-316
实验采用标准玻璃微电极细胞内记录技术记录心肌细胞动作电位(action potential,AP)、肌力换能器记录心肌收缩力(force contraction,Fc),研究乙酰胆碱(acetylcholine,ACh)对离体豚鼠心房肌、心室肌的作用。结果表明,10μmol/L ACh可缩短心房肌、心室肌动作电位的时程(action potential duration,APD)。心房肌APD在给药前后分别为208.57±36.05ms及101.78±14.41ms(n=6,P<0.01),心室肌APD在给药前后分别为286.73±36.11ms及265.16±30.06 ms(n=6,P<0.01)。心房肌动作电位的幅度(action potential amplitude,APA)也降低,给药前后分别为88.00±9.35 mV及62.62±20.50 mV(n=6,P<0.01),而心室肌APA无明显变化。ACh还降低心房肌、心室肌的收缩力,心房肌、心室肌Fc的抑制率分别为100%(n=6,P<0.01)和37.57±2.58%(n=6,P<0.01)。ACh对心房肌、心室肌APD和Fc的抑制作用在一定范围内(1nmol/L~100μmol/L)随ACh浓度的增高而增强。用Scott法求出ACh对心房肌、心室肌APD缩短作用的KD值,分别为0.275和0.575μmol/L,对Fc抑制作用的KD值分别为0.135和0.676μmol/L。各浓度下ACh对心房肌效应与心室肌效应作组间t检验,从10nmol/L到0.1mmol/L均有显著的统计学差异。此外,10μmol/L阿托品及20mmol/L  相似文献   

3.
Satoh H 《Life sciences》2003,72(9):1039-1048
Effects of NS-7 (1 to 100 microM), a novel neuroprotective drug, on the action potentials in guinea pig ventricular muscles were investigated at different stimulation frequencies, different extracellular Ca(2+) concentrations ([Ca](o)) and in the presence of inhibitors for selective delayed rectifier K(+) channels. A conventional microelectrode technique was carried out. NS-7 caused inhibitory actions on the action potential configuration in a concentration-dependent manner. NS-7 at less concentrations than 30 microM did not affect, but at 100 microM decreased the action potential amplitude (APA) and the maximum rate of depolarization (V(max)) by 11.1 +/- 2.3% (n = 14, P < 0.05) and by 24.3 +/- 2.6% (n = 14, P < 0.01), respectively. NS-7 at 100 microM also prolonged the 75 and 90% repolarizations of action potential duration (APD(75) and APD(90)) by 14.5 +/- 2.2% (n = 14, P < 0.05) and 20.2 +/- 2.4% (n = 14, P < 0.01), respectively, but it at any concentrations failed to affect the 50% repolarization of action potential duration (APD(50)). The resting potential was unaffected. These responses were almost reversible after 10-to 20-min washout. The stronger inhibition was caused at higher frequencies of stimulation. NS-7 prolonged the APD at lower [Ca](o) than 3.6 mM. In the presence of 5 microM E-4031 or 30 microM 293B, NS-7 increased further the APD. These results indicate that NS-7 at relatively higher concentrations produced inhibitory actions on the cardiac muscles, and that the APD prolongation and the V(max) inhibition induced by NS-7 are dependent on stimulation frequencies, but are independent of [Ca](o) levels, resulting in exhibition of its cardioprotective action.  相似文献   

4.
Machine-pulled high-impedance glass capillary microelectrode is standard for transmembrane potential (TMP) recordings. However, it is fragile and difficult to impale, especially in beating myocardial tissues. We hypothesize that a high-impedance pure iridium metal electrode can be used as an alternative to the glass microelectrode for TMP recording. The TMPs were simultaneously recorded from isolated perfused swine right ventricles with a metal microelectrode and a standard glass microelectrode during pacing and during ventricular fibrillation. The basic morphology of TMP recorded with these electrodes was comparable. The action potential duration (APD) at 90% repolarization was 241 +/- 29 ms for the metal microelectrode and 236 +/- 31 ms for the glass microelectrode with a good correlation (r = 0.99, P < 0.0001). The maximum slope value of the APD restitution curves during pacing was also significantly correlated. One metal microelectrode and >20 glass microelectrodes were needed per study. We conclude that, in isolated perfused swine right ventricles, the TMP recorded by the metal microelectrode is comparable with that recorded by the glass microelectrode. Because the metal microelectrode is more durable than the glass microelectrode, it can serve as an alternative for APD recording and for restitution analyses.  相似文献   

5.
The molecular mechanisms of anticholinergic actions of doxorubicin were examined by electrophysiological methods in atria and myocytes isolated from guinea-pig heart. A direct anticholinergic action of doxorubicin was confirmed with antagonistic action on carbachol-induced negative inotropic effect in atria. Both carbachol and adenosine produced shortening of action potential duration in atria measured by a microelectrode method. Doxorubicin (10-100 microM) inhibited the carbachol-induced action potential shortening in a concentration-dependent manner. However, doxorubicin did not antagonize the shortening elicited by adenosine. The whole-cell voltage clamp technique was performed to induce the muscarinic acetylcholine-receptor-operated K+ current (IK.ACh) in atrial myocytes loaded with GTP or GTPgammaS, a nonhydrolysable analogue of GTP. Doxorubicin (1-100 microM) suppressed carbachol-induced IK.ACh in a concentration-dependent manner (IC50 = 5.6 microM). In contrast, doxorubicin (10 and 100 microM) suppressed neither adenosine-induced IK.ACh nor GTPgammaS-induced IK.ACh. These results indicate that doxorubicin produces a direct anticholinergic effect through the muscarinic receptors in atrial myocytes.  相似文献   

6.
The effects of acute amiodarone infusion on dynamics of ventricular fibrillation (VF) are unclear. Six isolated swine right ventricles (RVs) were studied in vitro. Activation patterns during VF were mapped optically, whereas action potentials were recorded with a glass microelectrode. At baseline, VF was associated with frequent spontaneous wave breaks. Amiodarone (2.5 microg/ml) reduced spontaneous wave breaks and increased the cycle length (CL) of VF from 83.3 +/- 17.8 ms at baseline to 118.4 +/- 25.8 ms during infusion (P < 0.05). Amiodarone increased the reentrant wave front CL (114.4 +/- 15.5 vs. 78.2 +/- 19.0 ms, P < 0.05) and central core area (4.1 +/- 3.8 vs. 0.9 +/- 0.3 mm2, P < 0.05). Within 30 min of infusion, VF terminated (n = 1), converted to ventricular tachycardia (VT) (n = 1) or continued at a slower rate (n = 4). Amiodarone flattened the APD restitution curves. We conclude that amiodarone reduced spontaneous wave breaks. It might terminate VF or convert VF to VT. These effects were associated with the flattening of APD restitution slope and increased core size of reentrant wave fronts.  相似文献   

7.
The effects of quinidine and lidocaine on frog ventricle were studied by using a single sucrose gap voltage clamp technique. In Ca2+-Ringer, quinidine (80 microM) caused slight prolongation of action potential duration (APD50) and significant inhibition of twitch tension. Lidocaine (40 microM) shortened APD50 without significant effect on twitch tension. In tetrodotoxin (TTX)-treated preparations, quinidine caused significant prolongation of APD50 from 529 +/- 19 msec to 597 +/- 11 msec, (n = 9) and inhibition of twitch tension, but lidocaine did not affect APD50 and twitch tension. Under voltage clamp condition, quinidine reduced peak inward current in the absence of TTX, but enhanced peak inward current in the presence of TTX. The steady state outward current was increased by quinidine. Lidocaine didn't affect peak inward current in the absence or in the presence of TTX. Membrane current through the inward rectifier (IK1) was slightly increased by lidocaine, but significantly inhibited by quinidine. The enhancement of peak inward current by quinidine was retarded or reversed in preparation bathed with Sr2+-Ringer. When Ni2+ was added to a preparation bathed in Ca2+-Ringer, an inhibition of calcium inward current and action potential plateau was observed. The spike amplitude of the action potential was, however, unaffected by Ni2+. In this Ni2+-treated preparation, lidocaine (20 microM) caused significant shortening of APD50 without significant effect on action potential amplitude. The shortening of APD50 was associated with a slight increase of steady state outward current. The increase of steady state outward current by lidocaine was absent in the TTX-treated preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The thoracic vein hypothesis of chronic atrial fibrillation (AF) posits that rapid, repetitive activations from muscle sleeves within thoracic veins underlie the mechanism of sustained AF. If this is so, thoracic vein ablation should terminate sustained AF and prevent its reinduction. Six female mongrel dogs underwent chronic pulmonary vein (PV) pacing at 20 Hz to induce sustained (>48 h) AF. Bipolar electrodes were used to record from the atria and thoracic veins, including the vein of Marshall, four PVs, and the superior vena cava. Radio frequency (RF) application was applied around the PVs and superior vena cava and along the vein of Marshall until electrical activity was eliminated. Computerized mapping (1,792 electrodes, 1 mm resolution) was also performed. Sustained AF was induced in 30.6 +/- 6.5 days, and ablation was done 17.3 +/- 8.5 days afterward. Before ablation, the PVs had shorter activation cycle lengths than the atria, and rapid, repetitive activations were observed in the PVs. All dogs converted to sinus rhythm during (n = 4 dogs) or within 90 min of completion of RF ablation. Rapid atrial pacing afterward induced only nonsustained (<60 s) AF in all dogs. Average AF cycle lengths after reinduction were significantly (P = 0.01) longer (183 +/- 31.5 ms) than baseline (106 +/- 16.2 ms). There were no activation cycle length gradients after RF application. We conclude that thoracic vein ablation converts canine sustained AF into sinus rhythm and prevents the reinduction of sustained AF. These findings suggest that thoracic veins are important in the maintenance of AF in dogs.  相似文献   

9.
The direct effects of atrial natriuretic factor (ANF) and acetylcholine (ACh) on isolated guinea pig ventricular papillary muscle were studied. ANF (3 x 10(-9) - 3 x 10(-7) M), a cardiogenic hormone, had no significant electrical or mechanical effects on guinea pig papillary muscle driven at a frequency of 60 beats/min in normal (4 mM) and high [K]0 (27 mM) Tyrode solutions. On the other hand, ACh (3 x 10(-8) - 3 x 10(-7) M) caused a significant shortening of action potential duration and the contractile force showed no change or a slight decrease. At high concentration (5 microM), ACh reduced action potential durations at 50% and 90% repolarization (APD50 and APD90) by 10.5 +/- 2.1% and 12.4 +/- 1.8%, respectively, but the contractile force was slightly increased by 9.8 +/- 1.2%. In eleven of twenty-six preparations, spontaneous activity occurred and intermingled with driven activity. The ectopic rhythms were suppressed by ACh (1-5 microM). The changes in electrical but not mechanic activity induced by ACh were suppressed in the presence of five micromolar atropine. These results reveal that, in guinea pig papillary muscle, ANF had no direct chronotropic or inotropic effect. ACh may reduce APD and spontaneous discharges through an activation of muscarinic receptors but enhance twitch tension through other mechanisms.  相似文献   

10.
Diabetes mellitus (DM) is an independent risk of atrial fibrillation. However, its arrhythmogenic substrates remain unclear. This study sought to examine the precise propagation and the spatiotemporal dispersion of the action potential (AP) in the diabetic atrium. DM was induced by streptozotocin (65 mg/kg) in 8-wk-old male Wister rats. Optical mapping and histological analysis were performed in the right atrium (RA) from control (n = 26) and DM (n = 27) rats after 16 wk. Rate-dependent alterations of conduction velocity (CV) and its heterogeneity and the spatial distribution of AP were measured in RA using optical mapping. The duration of atrial tachyarrhythmia (AT) induced by rapid atrial stimulation was longer in DM (2.4 ± 0.6 vs. 0.9 ± 0.3 s, P < 0.05). CV was decreased, and its heterogeneity was greater in DM than control. Average action potential duration of 80% repolarization (APD(80)) at pacing cycle length (PCL) of 200 ms from four areas within the RA was prolonged (53 ± 2 vs. 40 ± 3 ms, P < 0.01), and the coefficient of variation of APD(80) was greater in DM than control (0.20 ± 0.02 vs. 0.15 ± 0.01%, P < 0.05). The ratio of APD(80) at PCL shorter than 200 ms to that at 200 ms was smaller (P < 0.001), and the incidence of APD alternans was higher in DM than control (100 vs. 0%, P < 0.001). Interstitial fibrosis was greater and connexin 40 expression was lower in DM than control. The remodeling of the diabetic atrium was characterized as follows: greater vulnerability to AT, increased conduction slowing and its heterogeneity, the prolongation of APD, the increase in spatial dispersion and frequency-dependent shortening of APD, and increased incidence of APD alternans.  相似文献   

11.
The curvilinearity of the atrial pressure-volume curve implies that atrial compliance decreases progressively with increasing left atrial (LA) pressure (LAP). We predicted that reduced LA compliance leads to more rapid deceleration of systolic pulmonary venous (PV) flow. With this rationale, we investigated whether the deceleration time (t dec) of PV systolic flow velocity reflects mean LAP. In eight patients during coronary surgery, before extracorporeal circulation, PV flow by ultrasonic transit time and invasive LAP were recorded during stepwise volume loading. The t dec was calculated using two methods: by drawing a tangent through peak deceleration and by drawing a line from peak systolic flow through the nadir between the systolic and early diastolic flow waves. LA compliance was calculated as the systolic PV flow integral divided by LAP increment. Volume loading increased mean LAP from 11 +/- 3 to 20 +/- 5 mmHg (P < 0.001) (n = 40), reduced LA compliance from 1.16 +/- 0.42 to 0.72 +/- 0.40 ml/mmHg (P < 0.004) (n = 40), and reduced t dec from 320 +/- 50 to 170 +/- 40 ms (P < 0.0005) (n = 40). Mean LAP correlated well with t dec (r = 0.84, P < 0.0005) (n = 40) and LA compliance (r = 0.79, P < 0.0005) (n = 40). Elevated LAP caused a decrease in LA compliance and therefore more rapid deceleration of systolic PV flow. The t dec has potential to become a semiquantitative marker of LAP and an index of LA passive elastic properties.  相似文献   

12.
Xu R  Liu BY  Niu WZ 《生理学报》2002,54(2):154-158
实验应用常规微电极方法研究了在生理温度下 (36 5± 0 5℃ )降钙素基因相关肽 (calcitoningene relatedpeptide ,CGRP)对豚鼠心房肌细胞复极过程的影响及其与钾电流的关系。结果表明 :(1)CGRP(16nmol/L)可拮抗由钾通道阻断剂BaCl2 、4 AP引起的动作电位时间延长。 (2 )CGRP(16nmol/L)能够增加细胞外高钾 (18 5mmol/L)条件下心房肌慢反应动作电位的APA和Vmax,并缩短传导时间。 (3)CGRP(16nmol/L)能减弱甚至消除因并用CsCl (5mmol/L)和无钾灌流液诱发的触发活动。 (4)CGRP对动作电位复极过程的作用因温度条件而异。在生理温度下 ,CGRP(5、16和 5 0nmol/L)能够使动作电位平台抬高 ,缩短动作电位复极化 2 0 %、5 0 %和 90 %时程。其中 ,对动作电位复极化 2 0 %、5 0 %时程的作用呈剂量依赖性。而在室温下 (2 5 5± 2 1℃ ) ,CGRP使动作电位复极化 2 0 %、5 0 %和90 %时程延长。上述结果提示 ,CGRP对心房肌细胞具有多重电生理效应 ,其中生理温度下CGRP对钾电流的促进作用在动作电位的改变中占重要地位 ,今后有必要进一步研究CGRP对各种钾通道的作用  相似文献   

13.
Responsiveness to ouabain of the inotropic and chronotropic effects in rat atrial muscles during development (3-18 wks old) was examined. In spontaneously beating rat right atrial muscles, ouabain (3-30 microM) caused a potent positive inotropic effect in a concentration-dependent manner, but failed to have a chronotropic effect; at 30 microM, 78.6 +/- 3.4% (n = 14, p<0.01) in the contractile force and -1.1 +/- 2.3% (n = 14, p>0.05) in the sinus rate in 10-wk-old rats. The myocardium during development increased the responsiveness to ouabain (10 microM) by 27.6 +/- 2.1% (n = 14, p<0.01), 58.7 +/- 3.3% (n = 14, p<0.001), and 47.2 +/- 2.3% (n = 14, p<0.001) in 3-, 10-, and 18- wk-old rats, respectively. However, the response on the sinus rate was not modified in all of the developing stages. Higher frequencies of stimulation caused the more potent inotropic effect in left atrial muscles. In the experiments using a Ca2+-sensitive fluorescent dye (Fura-2), ouabain (10 and 30 microM) increased the cellular Ca2+ concentrations by 3.0 +/- 2.1% (n = 6, p>0.05) and 12.7 +/- 1.5% (n = 6, p<0.05) in 3-wk-old rats and by 13.0 +/- 2.7% (n = 6, p<0.05) and 42.9 +/- 3.1% (n = 6, p<0.01) in 18-wk-old rats, respectively. These results suggest that the ouabain-evoked response is enhanced during development (but tends to decrease from the maximum after maturing), presumably resulting from developmental degrees of cellular mechanisms such as Na+/K+ pump activity and Na+/Ca2+ exchange and is reflected by changes in the cellular Ca2+ concentration.  相似文献   

14.
Acyclovir is an acyclic guanine analog with a considerable activity against herpes simplex viruses. We studied the antiherpetic activity of acyclovir in macrophages and fibroblast cell lines. Utilising a plaque reduction assay we found that acyclovir potently inhibited the HSV-1 replication in macrophages (EC50) = 0.0025 microM) compared to Vero (EC50 = 8.5 microM) and MRC-5 (EC50 = 3.3 microM) cells. The cytotoxicity of acyclovir was not detected at concentrations < or = 20 microM, thus the selective index in macrophages was >8000. This marked difference in antiherpetic activity between macrophages and fibroblasts was not observed with Foscarnet and PMEA. We suggest that this potent antiviral effect of acyclovir is mainly due to a proficient phosphorylation of the drug and/or a favourable dGTP/acyclovir triphosphate ratio in macrophage cells.  相似文献   

15.

Background

Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO.

Methods

Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer.

Results

CO (10-4 - 10-3 M) caused prominent decrease of action potential duration (APD) in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect.

Conclusions

Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.  相似文献   

16.
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.  相似文献   

17.
Transgenic mice have been increasingly utilized to investigate the molecular mechanisms of cardiac arrhythmias, yet the rate dependence of the murine action potential duration and the electrical restitution curve (ERC) remain undefined. In the present study, 21 isolated, Langendorff-perfused, and atrioventricular node-ablated mouse hearts were studied. Left ventricular and left atrial action potentials were recorded using a validated miniaturized monophasic action potential probe. Murine action potentials (AP) were measured at 30, 50, 70, and 90% repolarization (APD(30)-APD(90)) during steady-state pacing and varied coupling intervals to determine ERCs. Murine APD showed rate adaptation as well as restitution properties. The ERC time course differed dramatically between early and late repolarization: APD(30) shortened with increasing S1-S2 intervals, whereas APD(90) was prolonged. When fitted with a monoexponential function, APD(30) reached plateau values significantly faster than APD(90) (tau = 29 +/- 2 vs. 78 +/- 6 ms, P < 0.01, n = 12). The slope of early APD(90) restitution was significantly <1 (0.16 +/- 0.02). Atrial myocardium had shorter final repolarization and significantly faster ERCs that were shifted leftward compared with ventricular myocardium. Recovery kinetics of intracellular Ca(2+) transients recorded from isolated ventricular myocytes at 37 degrees C (tau = 93 +/- 4 ms, n = 18) resembled the APD(90) ERC kinetics. We conclude that mouse myocardium shows AP cycle length dependence and electrical restitution properties that are surprisingly similar to those of larger mammals and humans.  相似文献   

18.
In guinea-pig papillary muscle the time course of the changes in contractile force and action potential duration (APD) were studied after periods of rest of variable duration. After a long period of rest, the force of contraction adapted to pre-rest control values in a monophasic manner whereas the time-course of the APD was clearly biphasic. The post-rest adaptation of the APD could be described mathematically by a simple model, which considers the action potential duration during steady state as the sum of a resting value (APDR) plus a lengthening effect of activation (LEA) minus a shortening effect of activation (SEA). LEA and SEA are assumed to occur immediately, with each excitation and to decay continuously. During repetitive stimulation, both effects will accumulate. Using the constants found for the post-rest adaptation of the APD, the steady-state frequency-dependence of the APD could also be described with this model.  相似文献   

19.
Overexpression of the sarcoplasmic reticulum Ca ATPase (SERCA2a) produces positive inotropism and it has been proposed as a promising strategy to counteract defective excitation-contraction coupling in the failing heart. However, the effects of overexpressing SERCA2a on action potential duration (APD), which can affect diastolic parameters in the heart, is unknown. We, therefore, investigated the relationship between SERCA2a overexpression and APD in adult rabbit ventricular myocytes which were cultured for 48 h. Overexpression of SERCA2a was achieved by infection with an adenovirus carrying both SERCA2a and GFP independently driven by CMV promoters, Ad.SERCA2a. Myocytes infected with Ad.GFP only and/or non-infected myocytes were used as controls. Electrophysiological measurements were taken using switch clamping with 15-25 M Omega resistance microelectrodes. In Ad.SERCA2a infected myocytes, APD was significantly reduced compared with both groups of control cells at 0.5 Hz (APD50 (ms) non-infected: 481+/-98, n=12; Ad.GFP: 464+/-85, n=11; Ad.SERCA2a: 285+/-69, n=13 (mean+/-S.E.M.) and at 1 Hz (APD50 (ms) non-infected: 375+/-64, n=22; Ad.GFP: 363+/-47, n=18; Ad.SERCA2a: 231+/-54, n=24). Using AP voltage-clamping, we recorded a 0.2 mM Cd-sensitive current which can be ascribed to Ca current flowing during the AP. The integral of this current was reduced in Ad.SERCA2a myocytes compared with control (non-infected charge (pC): 27.5+/-4.2, n=8; Ad.SERCA2a: 15.5+/-4.1, n=11; P<0.01). Using AP clamping during the loading protocol, to take into account changes in APD, SR Ca content (assessed by integrating a 20 mM caffeine-induced inward current) was significantly larger in Ad.SERCA2a compared with both controls (SR Ca content (microM/l non-mitochondrial volume): non-infected: 25.5+/-7, n=8; Ad.GFP: 25.7+/-11, n=6; Ad.SERCA2a: 80.5+/-19, n=8). In conclusion, this study shows that SR Ca content is increased despite decreased Ca entry after overexpression of SERCA2a, and this can lead to positive inotropism. This effect coupled with shorter APD may be a useful therapeutic modality in heart failure.  相似文献   

20.
迷走神经对家兔在体心脏心室肌细胞跨膜电位的影响   总被引:4,自引:0,他引:4  
本研究观察了电刺激迷走神经对家兔在体心脏心室肌细胞跨膜电位的作用及钾通道阻滞剂氯化四乙基铵对这一作用的影响。结果表明,在自然心率条件下,迷走神经刺激可使静息电位(RP)、动作电位振幅(APA)和0相最大上升速率(dv/dt)_(max)增加,动作电位时程(APD)缩短。冠脉注射氯化四乙基铵使心室肌细胞复极过程明显延长,迷走神经刺激不再引起 RP、APA 增大,动作电位时程不再缩短,(dv/dt)_(max)反而减小。这些结果提示,迷走神经刺激对正常心室肌细胞跨膜电位的影响可能是通过外向 K~ 流增加引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号