首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

2.
The karyotypes of 10 species of the Liliaceae from the Qinling Range are reported as follows. I. Polygonatum Mill. (1) P. odoratum ( Mill. ) Druce was found to have the karyotype 2n=20=12m+8sm ( Plate 3, Fig. I), which belongs to Stebbins’ (1971) karyotype classification 2B. The chromosomes range from 3.88 to 11.26μm in size. Table 2 shows the karyotypes and number fundamentals (N.F.) of 13 materials from 12 different localities. The N. F. of these materials can be classified into two groups: N.F. =36 and N.F.=40, besides one (N.F. =38) from Beijing. N. F. =36 covers all the materials with 2n= 18 which have relatively symmetrical karyotypes ( all consisting of m and sm chromosomes), one with 2n=20 (10m+6sm+4st) and one with 2n=22 (14m+8st). N.F. =40 include four materials with 2n= 20 (all of m and sm chromosomes ) and 3 with 2n= 22 (10m+ 8sm+ 4st). ¥ It is considered that there are two original karyotypes, 2n= 18 with N. F. = 36 and 2n= 20 with N.F. =40, which are relatively symmetrical. All the more asymmetrical karyotypes with some st chromosomes have probably evolved from the symmetrical karyotypes without st chromosomes by centric fission. (2) P. zanlanscianense Pamp. has the karyotype 2n=30=18m(2SAT) + 4sm+ 6st+ 2t (Plate 1, Fig. 1) which belongs to 2C. The chromosomes range from 2.16 to 9.76μm. ¥ II. Asparagus filicinus Buch.-Ham. ex D.Don. The karyotype of this species is 2n = 16= 8m(2SAT )+ 6sm + 2st (Plate 1, Fig. 1 and Table 3 ) , which belongs to 2B. The chromosomes range from 2.33 to 5.30μm. Most species in Asparagus, including A.Filicinus, are reported to have basic number x= 10, and therefore 2n= 16 is a new chromosome number for A.filicinus. EL-Saded et.al.(1972) gave a report of n=8 for A. stipularis from Egypt, while Delay (1947) reported 2n = 24 for A. trichophyllus and A. verticillatus, Sinla(1972 ) gave a report of 2n=48 for A.racemosus. It is certain that there are two basic numbers in the genus Asparagus. III. Cardiocrinum giganteum (Wall.) Makino was found to have the karyotype 2n=24=4m+8st+12t (Plate 1, Fig. 1 ), which belongs to 3B. The chromosomes range from 8.71 to 20.24μm. IV. Smilax discotis Warb. was shown to have the karyotype 2n=32=4m+22sm+4st (2SAT)+2t (Plate 1, Fig. 1 and Table 3), which belongs to 3C. The first pair is much longer than others. The chromosomes range from 1.79 to 9.21μm. The chromosome number and karyotype of S. discotis are both reported for the first time. V. Reineckia carnea (Andr.) Kunth is of the karyotype 2n=38=28m+10sm (Plate 2, Fig. 1 ), which belongs to 2B. The chromosomes range from 5.65 to 12.75μm. VI. Tupistra chinensis Baker was found to have the karyotype 2n=38=25m+ 13sm (Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 8.11 to 23.82μm. A pair of heterozygous chromosomes is arranged at the end of the idiogram. The eighth pair possesses an intercalary satellite. Huang et al. (1989) reported the karyotype of T. chinensis from Yunnan as 2n = 38 = 24m+ 14sm without any intercalary satellite. Nagamatsu and Noda (1970) gave a report on the karyotype of T. nutans from Bhutan, which consists of 18 pairs of median to submedian chromosomes and one pair of subterminal chromosomes. And one pair of submedian chromosomes possess intercalary satellites on their short arms. VII. Rohdea japonica (Thunb) Roth. was found to have the karyotype 2n=38=30m+6sm+2st ( Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 7.94 to 18.29μm. Nagamatsu and Noda (1970) reported that the karyotype of R.japonica from Japan was the same as that of Tupistra nutans from Bhutan. But we have not discov ered any chromosome with an intercalary satellite. VIII. Hosta Tratt. (1) H. plantaginea (Lam.) Aschers was shown to have 2n=60. The 60 chromosomes are in 30 pairs,which can be classified into 4 pairs of large chromosomes (7.32- 8.72μm ), 3 pairs of medium-sized ones (4.72-5.60μm), and 23 pairs of small ones (1.40-3.64μm), (Plate 3 ,Table 4 ). The karyotype of H. plantaginea is reported for the first time. (2) H. ventricosa (Salisb.) Stearn was counted to have 2n=120, The 120 chromosomes are in 60 pairs, which can be classified into 8 pairs of large chromosomes (7.00- 8.40μm ), 6 pairs of medium-sized ones(4.40- 6.15um ), 46 pairs of small ones (1.20- 3.85μm), (Plate 3, Table 4). Based on the karyotypes of H. plantaginea and H. ventricosa, the latter is probably a tetraploid in the genus Hosta. Kaneko (1968b) gave a report on the karyotype of H. ventricosa, which is of8 pairs of large chromosomes, 4 pairs of medium-sized and 48 pairs of small ones.  相似文献   

3.
We describe a new karyotype of Callicebus torquatus using conventional staining, G-banding with Wright Stain, CBG, Ag-NOR staining and fluorescence in situ hybridization (FISH) with human telomere probes and comparative analysis with the previously reported karyotype of C. torquatus torquatus (2n = 20). We studied a female specimen maintained in captivity at the Centro Nacional de Primatas (Para, Brazil). This titi monkey presented 2n = 22, with four large biarmed and six acrocentric autosome pairs; the X chromosome is a medium submetacentric. C-bands were revealed at the centromeric region of all acrocentrics and X chromosome; punctual C-bands also are visualized at the centromeric region in the large biarmed pairs. The NOR site was located at the long arm of pair 4, at the position of a conspicuous secondary constriction. Hybridization signals were detected exclusively at the terminal region of all chromosomes. The karyotype described here has one acrocentric pair more than that found in the literature and also differs by amount and distribution of constitutive heterochromatin. Our data support the notion that the torquatus group may be composed of distinct species, each with its own karyotype.  相似文献   

4.
同源四倍体青花菜的核型分析   总被引:1,自引:0,他引:1  
以四倍体青花菜为材料,采用常规压片法进行核型分析和有丝分裂观察.结果表明:四倍体青花菜核型公式为2n=4x=36=16m+20sm(4 SAT),其中第3、4、7、8对为中着丝粒染色体,第1、2、5、6、9对为近中着丝粒染色体,第6对染色体具随体;核型类型属于2A型,为基本对称型;染色体相对长度组成为2n=36=16 M_2+20 M_1,表明该四倍体青花菜是二倍体加倍得到,为同源四倍体.在部分四倍体根尖中发现非整倍体细胞,其染色体数目变异较大;与二倍体相比,四倍体有丝分裂过程存在双核仁、体细胞配对、染色体桥等异常现象.  相似文献   

5.
Conventional and molecular cytogenetic analyses were performed in specimens of the Neotropical Crenuchus spilurus freshwater fish species from a single location (Caeté River, Brazil). All specimens presented diploid values of 2n?=?38 chromosomes (12 m?+?4sm?+?2st?+?20a), the lowest reported for family Crenuchidae up to now. A single pair of nucleolar organizing regions (NORs) was detected in the subtelocentric chromosome pair no. 9 by silver-staining and fluorescence in situ hybridization (FISH) with 18S rDNA sequence-specific probe. Two pairs of 5S rRNA gene clusters were found either interstitial or terminally located in the long arms of the acrocentric chromosome pairs nos. 10 and 13. Heterochromatic regions were clearly observed in the short arms of the NOR-bearing chromosome pair and weakly-positive to the pericentromeric regions of most acrocentric chromosomes. Additionally, no sex chromosomes were identified in the surveyed specimens. Crenuchidae have signals of several mechanisms involved in karyotype diversification within this family: differential location of heterochromatin-rich regions, multiplication, and translocation of rDNA clusters, presence/absence of sex chromosomes, macrostructural changes in morphology and number of chromosomes. This variety of karyotype patterns reveals the importance of widening cytogenetic studies to more taxa for better know the chromosomal evolution occurred in this group.  相似文献   

6.
Ueno K  Takai A 《Genetica》2008,132(1):35-41
The karyotype and other chromosomal markers as revealed by C-banding and Ag-staining were studied in Lutjanus quinquelineatus and L. kasmira (Lutjanidae, Perciformes). While in latter species, the karyotype was invariably composed of 48 acrocentric chromosomes in both sexes, in L. quinquelineatus the female karyotype had exclusively 48 acrocentric chromosomes (2n = 48) but that of the male consisted of one large metacentric and 46 acrocentric chromosomes (2n = 47). The chromosomes in the first meiotic division in males showed 22 bivalents and one trivalent, which was formed by an end-to-end association and a chiasmatic association. Multiple sex chromosome system of X1X1X2X2/X1X2Y type resulting from single Robertsonian fusion between the original Y chromosome and an autosome was hypothesized to produce neo-Y sex chromosome. The multiple sex chromosome system of L. quinquelineatus appears to be at the early stage of the differentiation. The positive C-banded heterochromatin was situated exclusively in centromeric regions of all chromosomes in both species. Similarly, nucleolus organizer region sites were identified in the pericentromeric region of one middle-sized pair of chromosomes in both species. The cellular DNA contents were the same (3.3 pg) between the sexes and among this species and related species.  相似文献   

7.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

8.
Frolov SV  Miller IN  Frolova VN 《Genetika》2000,36(3):361-366
The karyotype of stream Dolly Varden inhabiting a tributary of the Belaya River (the basin of Naiba River, southern Sakhalin) was determined (2n = 82 and NF = 98 + 2). According to the main characteristics (chromosome number and arm number, the presence of a pair of marker submeta-subtelocentric chromosomes with nucleolus organizer regions (NORs), one pair of large acrocentric chromosomes, and one pair of subtelocentric chromosomes), this karyotype is identical to the karyotype of anadromous southern Dolly Varden from Salvelinus malma krasheninnikovi of Primorye and Japan. However, in most stream Dolly Varden individuals, additional active nucleolus organizer regions (NORs) located in telomeric and paracentric regions of two to three pairs of acrocentric chromosomes were revealed. It is suggested that the stream and anadromous southern forms of Dolly Varden are evolutionarily related NORs that are silent in the anadromous souther form are active in the stream form. Possible causes of these differences in NOR activity are discussed.  相似文献   

9.
加拿大引进的二倍体燕麦种质的核型鉴定   总被引:1,自引:0,他引:1  
采用常规压片法对砂燕麦、西班牙燕麦和短燕麦3个二倍体燕麦种进行了核型研究。结果表明:砂燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第4对染色体组的短臂上有1对随体,核不对称系数为68.17%;西班牙燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第7对染色体短臂上有1对随体,核不对称系数为59.31%;短燕麦染色体核型公式为2n=2x=14=6m+4sm+4st(2SAT),具近端部、近中部和中部着丝点染色体,第6对染色体组的短臂上有1对随体,核不对称系数为63.91%。虽然3个燕麦种的核型均为2A,但它们的染色体形态有明显不同,比较认为砂燕麦相对进化,短燕麦次之,西班牙燕麦较原始。本研究对燕麦种质资源的核型分析及进化地位研究具有参考价值。  相似文献   

10.
The chromosome numbers and karyotypes of 7 species of Smilax L. in Liliaceae (s. 1.) are cytotaxonomically studied in this work. Their karyotypic characters, distinction between the species and the chromosomal basis of sexual differentiation are discussed. The karyotypes of most species are first reported. The results are shown as follows (see Tables 1-4 for the chromosome parameters and the karyotype constitution; Fig. 1 for their idiograms): 1. Smilax nipponica Miq. The species is one of the herbaceous species distributed in East Asia. Two karyotypes, 2n = 26(type A) and 2n = 32 (type B), are found in the species (Plate 1: 1-7). The karyotype of No. 88032 (uncertain of -L--M--S- sexuality) is 2n = 26 = 2m + 6st + 6m + 4sm + 6sm + 2st. The karyotype has 4 pairs of L chromosomes, of which the first three pairs are subterminal, and the 4th is median. The karyotype belongs to 3B. No. 88045 (the male) and No. 88046 (the female) have 2n = 32. Their karyotypes are basically uniform, and both are -L--M-- S 2n=32= 2m+4sm+ 2st+ 2m+4sm+ 6m+ 10sm + 2st, also with 4 pairs of L chromosomes, but the 2nd pair is median, and thus different from the type A. The karyotype belongs to 3B. The first pair of chromosomes of the male are distinctly unequal in length, with the D. V. (0.93) of relative length between them obviously greater than that of the female (0.1). The pair seems to be of sex-chromosomes. Sixteen bivalents (n= 16) were observed at PMCs MI of No. 88045 (Plate 1: 4). The major difference between the karyotypes A and B are greater relative length of L chromosomes in the type A than in the type B, and the increase of chromosome number in the karyotype B mainly due to the increase of st chromosomes. Nakajima (1937)reports 2n= 30 for S. hederacea var. nipponica (=S. nipponica, Wang and Tang, 1980). 2. S. riparia A. DC. This species is also herbaceous, distributed in East Asia. Thirty chromosomes were found in root-tip cells (uncertain of sexuality). The kar -L--M--S-yotype is 2n = 30 = 8st + 6sm + 2st + 6m + 6sm + 2st (Plate 3: 1, 5), consisting mainly of sm and st chromosomes. There are 4 pairs of L chromosomes which are all subterminal and the m chromosomes appear to fall all into S category. Though the karyotype belongs to 3B, it is less symmetrical than that of S. nipponica. The species is karyologically rather different from S. nipponica, therefore. The first pair of chromosomes of this material are unequal in length, and it may be a male. The karyotype of this species is first reported. 3. S. sieboldii Miq. The species is a thorny climbing shrub, distributed in East Asia. At PMCs All, 16 chromosomes (n= 16) were found (Plate 2: 6), in accordance with Nakajima's (1933) report for a Japanese material. 4. S. china L. This species, a thorny climbing shrub, is of a wide distribution range mainly in East Asia and Southeast Asia. Two karyotypes were observed in different populations. (1) The population from Xikou has 2n = 96(6x) = 20st+L- -M- 6t + 6sm + 12st + 52(S) (Plate 3:7), of which the first three pairs of chromosomes are terminal, different from those in the other species. The arm ratios of both L and M chromosomes are larger than 2.0, which resembles those of S. davidiana. (2) PMCs MI of the population from Shangyu shew 15 chromosomes (n 15). The hexaploid of the species is recorded for the first time. Hsu (1967,1971) reported 2n = 30 from Taiwai and Nakajima (1937) recorded n = 30 from Japan, which indicates that the karyotype of the species varies not only in ploidy, but also in number. 5. S. davidiana A. DC. The somatic cells were found to have 32 chromosomes, and PMCs MI shew 16 bivalents (Plate 2: 1-5). The karyotype is 2n = 32=-L- -M- -S 8st + 4sm + 4st + 8sm + 8st. The karyotype belongs to 3B, and is less symmetrical than those in herbaceous species. The D. V. (0.20) of relative length between the two homologues of the first pair is slightly larger in the male than in the female (0.14), and it is thus difficult to determine whether they are sexual chromosomes or not. 6. S. glabra Roxb. The species is a non-thorny climbing shrub, distributed in East Asia and Southeast Asia. 32 chromosomes were found in somatic cells. The -L- -M- - Skaryotype is 2n= 32= 8st + 10st+6sm+8st (Plate 3: 2, 6),with only 3 pairs of sm chromosomes (12, 13 and 16th). The karyotype is more asymmetric than that of S. davidiana, although it is also of 3B (Table 1). The karyotype is first reported for the species. 7. S. nervo-marginata Hay. var. liukiuensis (Hay.) Wang et Tang The variety has a relatively narrow distribution range, mainly occurring in eastern China. The chromosomal number of somatic cells is 2n= 32 (Plate 3: 3-4). The karyotype is -L- -M- -S 2n = 32 = 2sm + 6st + 2sm + 2st + 2m + 6sm + 12st, evidently different from that of S. glabra. The first pair of chromosomes are submedian, and much longer than the 2nd to 4th pairs. The ratio in length of the largest chromosome to the smallest one is 4.3. The symmetric degree is of 3C, a unique type. The karyotype of the species is reported for the first time. In Smilax, the known basic numbers are 13, 15, 16 and 17. The two herbaceous species distributed in East Asia have three basic numbers: 13, 15 and 16, while the woody species studied mainly have 16, with no 13 recorded. Mangaly (1968) studied 8 herbaceous species in North America and reported 2n=26 for them except S. pseudo-china with 2n=30. Mangaly considered that a probably ancestral home of Smilax, both the herbaceous and woody, is in Southeast Asia and the eastern Himalayas, and speculated that the ancestral type of Sect. Coprosmanthus is possibly an Asian species, S. riparia. The karyotypes of the two herbaceous species in East Asia consist mostly of sm and m chromosomes, whereas those for the North American species are all of st chromosomes. Based on the general rule of karyotypic evolution, i.e. from symmetry to asymmetry, his speculation seems reasonable. Researches on sex-chromosomes of Smilax have been carried out since 1930 (Lindsay, 1930; Jensen, 1937; Nakajima, 1937; Mangaly, 1968), and they are generally considered to be the largest pair, but there is still no adequate evidence. The result of our observation on S. nipponica may confirm that the first pair of chromosomes of this species is XY type of sex-chromosomes. Chromosomes of the genus are small and medium-sized, varying between 1-6 μm, slightly larger in herbaceous species than in woody ones, larger in the karyotype of 2n=26 than in that of 2n=32. Based on karyotype constitution of the above 5 species, the karyotype in the genus is characterized by 4 pairs of L chromosomes and 2-5 pairs of M chromosomes, and mostly st and sm chromosomes, and by rather asymmetrical 3B type. The degree of symmetry in the above 5 species is from Sect. Coprosmanthus to Sect. Coilanthus, and herbaceous species towoody ones.  相似文献   

11.
Karyotypic and cytogenetic characteristics of Vimba vimba and V. elongata were investigated using differential staining techniques (sequential C-banding, Ag- and CMA3-staining) and fluorescent in situ hybridization (FISH) with 28S rDNA probe. The diploid chromosome number in both species was 2n = 50 with 8 pairs of metacentrics, 14 pairs of submetacentrics to subtelocentrics and 3 pairs of subtelo- to acrocentrics. The largest chromosome pair of the complements was characteristically subtelo- to acrocentric. The nucleolar organizer regions (NORs) in both species were detected in the telomeres of a single, middle-sized subtelocentric chromosome pair, a pattern common in a number of other Leuciscinae. FISH with rDNA probe produced consistently positive hybridization signals detected in the same regions indicated by Ag-staining and CMA3-fluorescence. The distribution of C-positive heterochromatin was identical in both species, including a conspicuous size polymorphism of heterochromatic blocks in the largest metacentric and subtelo- to acrocentric chromosomal pairs. No heteromorphic sex chromosomes were detected. A single analyzed individual of V. melanops possessed the same karyotype and NOR phenotype as V. vimba and V. elongata. The apparent karyotype homogeneity and chromosomal characteristics of ribosomal DNA in all three species of the genus Vimba is consistent to that found in most other representatives of the European leuciscine cyprinid fishes.  相似文献   

12.
四福花染色体核型的分析   总被引:1,自引:1,他引:0  
四福花[Tetradoxa ometensis (Hara)C.Y.Wu]体细胞具有36个染色体。其核型组成为2n=36=6m+14sm+4st+12t,即具有3对中部着丝点染色体,7对亚中部着丝点染色体,2对亚端部着丝点染色体和6对端部着丝点染色体。 四福花染色体核型分析表明,与传统对五福花科植物染色体具9基数的认识不同,其基数应为X=18。与Noguchi所发现的具18基数的三倍体五福花的核型相比较,二者在核型组成及染色体结构上都有明显差异。  相似文献   

13.
Cytogenetic analysis in three Rineloricaria pentamaculata populations revealed diploid number 2n = 56 chromosomes, karyotype formula 8m/sm + 48st/a and FN = 64. Owing to the presence of the heteromorphic chromosome pair with a big submetacentric chromosome and a small acrocentric one in both males and females, 42.9% of specimens in the Tauá Stream population had the karyotype formula 9m/sm + 47st/a and FN = 65. Analysis of the nucleolus-organizing region by Ag-NOR and FISH techniques showed a single NOR system at pair 5 for R. pentamaculata populations of the Keller River and the Tauá Stream. However, specimens of populations of the Tatupeba Stream had multiple NOR systems at pairs 5 and 8. A constitutive heterochromatin pattern in R. pentamaculata is mainly distributed in the pericentromeric and telomeric regions with interstitial markers in certain chromosomes. Heterochromatin is located in the telomeric and centromeric positions of the acrocentric chromosome in the heteromorphic pair of the Tauá Stream population. In the submetacentric chromosome the markings are located in the telomeric (short arm), pericentomeric and interstitial (long arm) positions. The origins of polymorphisms are discussed.  相似文献   

14.
江豚的染色体核型研究   总被引:3,自引:2,他引:1  
江豚(Neophocaena phocaenoides)是鲸目(Cetacea)鼠海豚科(Phocaenidae)的一种小型齿鲸,在淡水和海洋中均有分布。关于江豚染色体的研究,国外文献中尚未见记载,国内亦无报道。Pilleri和Gihr(1972,1975)根据江豚的形态解剖学的研究,认为我国产的江豚和印度洋的及日本海的江豚不属同一个种,但国际上对此尚有不同意见。因此,搞清江豚染色体的核型,将可有助于澄清江豚属的的分类问题。本文就我国长江产江豚的染色体核型作初步探讨。  相似文献   

15.
Karyotypes of Hapalomys delacouri (Rodentia, Muridae) and Typhlomys cinereus (Rodentia, Platacanthomyidae) from Vietnam are described for the first time. The diploid karyotype of Hapalomys delacouri is 38 (NFa=48), consisting of six pairs of bi-armed and 12 pairs of acrocentric autosomes decreasing in size; plus a large metacentric X chromosome and Y chromosome, also metacentric, that is equal in size to the largest pair of acrocentric autosomes. The newly described karyotype differs significantly from that reported for Hapalomys delacouri from northern Thailand. The latter record very likely represents a different species of Hapalomys, possibly the taxon Hapalomys pasquieri described from north-central Laos.The diploid karyotype of Typhlomys cinereus is 38 (NF=48), consisting of five pairs of meta- to submetacentric and 14 pairs of acrocentric chromosomes varying in size from large to small; sex chromosomes were not defined.  相似文献   

16.
以紫薇(Lagerstroemia indica)、尾叶紫薇(L.caudata)、屋久岛紫薇(L.fauriei)和福建紫薇(L.limii)4种紫薇属植物为材料,利用染色体荧光原位杂交技术(FISH)获得了4种紫薇属植物的有丝分裂中期染色体FISH图及核型参数,分析了45SrDNA在紫薇属植物染色体上的数量和分布特点。结果表明,4种紫薇属植物染色体上均具有1对45SrDNA杂交位点,位于较长染色体短臂的近端部,紫薇、尾叶紫薇、屋久岛紫薇和福建紫薇的核型公式分别为2n=48=2M+24m+22sm、2n=48=30m+18sm、2n=48=2M+20m+26sm和2n=48=2M+32m+14sm,均为2A型。该研究首次获得了紫薇属植物45SrDNA荧光原位杂交核型,为紫薇属植物亲缘关系研究和细胞生物学研究提供了分子细胞学依据。  相似文献   

17.
Morphometric and karyotypic studies were made on two species of ricefishes collected from Yunnan, southwestern China.Oryzias latipes from Yunnan had the same morphological and karyological characteristics asO. latipes collected from eastern China. The Yunnan populations had 2n, 46 chromosomes consisting of 3 metacentric, 8 submetacentric, 2 subtelocentric, and 10 acrocentric pairs, the arm number (NF) being 68 (2n=46, NF=68, 3M+8SM+2ST+10A). The karyotype was characterized by having a “large” metacentric pair and nucleolus organizer regions (NORs) on the short arms of a submetacentric pair.Oryzias minutilius from Yunnan had the same morphological characteristics asO. minuiillus from Thailand and Burma, although the karyotype was different from that collected from Thailand. The Yunnan population had 2n, 42 chromosomes consisting of 21 acrocentric pairs, NF being 42 (2n=42, NF=42, 21A). The karyotype was characterized by having NORs at the telomeric regions of an acrocentric pair.Oryzias latipes occurs widely on the eastern Yunnan Plateau where the climate is temperate or subtropical, whereasO. minutilius is found in Xishiangbanna, the southern low mountain areas of Yunnan, where the climate is tropical.  相似文献   

18.
Gymnotus capanema n. sp. is described on the basis of cytogenetic, morphometric, meristic and osteological data from nine specimens (one male and eight females) from the municipality of Capanema, Pará, in the eastern Amazon of Brazil. Later, three additional specimens were found in museums and regarded as nontypes (not cytogenetically analysed). Gymnotus capanema, which occurs in sympatry with Gymnotus cf. carapo cytotype 2n = 42 (30m/sm + 12st/a) exhibits a novel karyotype for the genus, with 2n = 34 (20m/sm + 14st/a). Gymnotus capanema can be unambiguously diagnosed from all congeners on the basis of a combination of characters from external anatomy, pigmentation and osteology. The constitutive heterochromatin, rich in adenine-thymine (A-T) base pairs [4',6 diamidino-2-phenylindole dihydrochloride (DAPI) positive], occurs in the centromeric region of all of the chromosomes, and in the pericentromeric and the entire short arm of some chromosomes. The nucleolar organizing region (NOR), stained by silver nitrate, chromomycin A(3) (CMA(3)) and 18S ribosomal (r)DNA fluorescence in situ hybridization (FISH), occurs in the short arm of pair 15. FISH, with telomeric probes did not show interstitial telomeric sequences (ITS), despite the reduced 2n in comparison to the karyotypes of other species of Gymnotus. The karyotype of G. capanema, with a reduced 2n, is strikingly different from all other previously studied congeners.  相似文献   

19.
Eight species in eight genera of Liliaceae from Zhejiang were cytotaxonomically studied in this work. The karyotypes of Chinese materials of these species are mostly reported for the first time. The results are shown as follows (see Table 2-4 for chromosome parameters of them): 1. Disporum sessile D. Don Sixteen chromosomes are counted at metaphase of roottip cells.The Karyotype formula is 2n=16=2lm+2sm+4st+2sm+3sm+ 1sm(SAT)+2st (Plate 1: 2-3, see Fig. 1:1 for its idiogram). The Karyotype belongs to 3B in Stebbins’ (1971) karyotype classification, and consists of four pairs of larger chromosomes (1-4) and four pairs of smaller chromosomes (5-8). One SAT-chromosome is situated at the sixth pair. The chromosomes range between 4.85-16.63μm. The karyotypic constitution is similar to that of Japanese material reported by Noguchi (1974). Chang and Hsu (1974) reported 2n=14=13st+1sm and 2n= 16=2m + 13st + 1sm for the material from Taiwan under the name of D. shimadai Hay. (=D. sessile D. Don). Compared with our result of D. sessile, the differences are obvious. 2. Polygonatum odoratum (Mill.) Druce PMCs diakinesis shows eleven bivalents, n = 11, 5 large and 6 small (Plate 2:5). The meiosis is normal. The majority of reports of this species are 2n=20, with a few 2n=22 and 30 (see Table 1). The materials from southen Siberia and the Far East in USSR are all of 2n= 20. Our result is the same as recorded by Jinno (1966) in the Japanese material and by Li (1980) from Beijing. Ge (1987) reported 2n=20 in the cultivated individuals of Shandong, China, showing that both 2n=20 and 22 exist in China. 3. Scilla scilloides (Lindl.) Druce This species has the somatic chromosome number 2n=18 (Plate 1: 4-6, see Fig. 1:2 for its idiogram), of which two groups of chromosomes can be recognized, i.e. the 1 st -5 th pairs of large and the 6 th-9th pairs of small chromosomes. A distinct character of the karyotype is that two satellites are attached to the short arms of the 1st pair of chromosomes. The degree of asymmetry is of 3C. The karyotype formula is 2n = 18 = 2sm (SAT) + 6st + 2t+ 6m + 2sm. The chromosomes range from 2.02 to 11.93 μm. The Previous counts on the species are 2n = 16, 18, 26, 34, 35, 36 and 43 (see Table 1). The present investigation confirms Noda’s and Haga’s results. The species is considered to be of two genomes, namely A(x = 8) and B(x = 9). Our result shows a genome composition of BB, having a pair of large SAT-chromosomes. Chang and Hsu (1974) reported 2n = 34 from a population of Taiwan, an amphidiploid (AABB), Karyotypes of other Chinese populations are worth further researches. 4. Tricyrtis macropoda Miq. The chromosome number of somatic cells is 2n= 26, and PMCs MII shows 13 bivalents (n= 13) (Plate 3:1-3, see Fig. 1:3 for its idiogram). The karyotype formula is 2n= 26= 6m + 10sm + 6st + 4st (or t), which is composed of chromosomes: 4L + 22S in size. The degree of asymmetry is of 3B. No centromeres of the 12th and 13th pairs of chromosomes were observed at metaphase, and the chromosomes may be of st or t. Nakamura (1968) reported 2n= 26(4L+ 22S)= 2sm+ 2sm-st+ 14st-sm+ 8st for T. macropoda Miq. and 2n= 26(4L+ 22S)= 8m+ 2sm+2sm-st+ 2st-sm+ 12st for its ssp. affinis, both from Japan. It is clear that the major character of their karyotypes, i. e. 4L + 22S, is consistent with that reported here. Based on the previous and present reports, all Tricyrtis species studied are remarkably uniform in the basic karyotype, i. e. 4L + 22S. 5. Allium macrostemon Bunge. The present observation on the root-tip cells of the species shows 2n = 32 (Plate 3: 4-5, see Fig. 1:4 for its idiogram). The karyotype formula is 2n (4x)= 32= 26m + 6sm, which belongs to 2B, being of high symmetry. Except the 6th, 10th and 13th pairs of chromosomes all the are metacentric. Chromosomes of this species are large, ranging from 5.94 to 18.06 μm. Our result agrees with Kawano’s (1975) report under the name of A. grayi Regel ( = A. macrostemon, Wang and Tang 1980). 6. Asparagus cochinchinensis (Lour.) Merr. Ten bivalents were observed in PMCs MI, n=10 (Plate 1: 1). The present result confirms the number of a population of Taiwan recorded by Hsu (1971). 7. Ophiopogon japonicus (L. f.) Ker-Gawl. The species from Mt. Taogui, Hangzhou, is found to have 2n (2x)=36=22m + 14sm (Plate 2: 1,5, see Fig. 1:5 for its idiogram) which belongs to 2B. The karyotype is composed of 2 medium-sized chromosomes with metacentric centromeres and 34 small chromosomes, ranging from 1.34 to 4.92 μm. The populations from Mt. Tianzhu and Mt. Yuling, Zhejiang, are found to be aneuploids at tetraploid level (2n=64-70). It is interesting that Nagamatsu (1971) found the karyotypes of Japanese materials to be 2n= 67 and 68, also showing unsteady 4x karyotypes of this species. In the previous. reports (see Table 1), the chromosome numbers of this species are mainly 2n = 72, besides 2n = 36 recorded by Sato (1942) from Japan. 8. Liriope platyphylla Wang et Tang The somatic complement of the species collected from Mt. Tianzhu, Hangzhou, is 2n = 36 (Plate 2: 3-4, see Fig. 1:6 for its idiogram). The karyotype is 2n(2x) = 36 = 16m + 20sm, belonging to 2B type. The chromosomes are small except the medium-sized, 1st pair and the range is from 1.27 to 5.19μm. The material from Mt. Yuling, Zhejiang, is found to have a variety of chromosome numbers (2n= 60-71), as observed in Ophiopogon japonicus. Hasegawa (1968) reported the karyotype of 2n = 72 (4x) from Japan The 2x karyotype is first recorded. This genus is closely related to Ophiopogon. Based on the Hasegawa’s and present studies, all the species in these two genera are remarkably uniform in karyo-type. Therefore, the taxonomy of the two genera is worth further researches.  相似文献   

20.
The karyotype of a subspecies of the golden loach,Sabanejewia aurata balcanica from eastern Slovakia was studied by conventional Giemsa staining, Ag-NOR staining, and C-banding. The diploid chromosome number was 2n = 50. The karyotype comprised 2 pairs of metacentric, 6 pairs of submetacentric and 17 pairs of subtelocentric to acrocentric chromosomes. Both metacentric pairs and 2 large subtelocentric pairs had massive pericentromeric blocks, while all other elements had only weak blocks of heterochromatin. The NORs were localized on the short arms of one middle-sized subtelocentric pair. The karyotype ofS. a. balcanica differs from that ofS. aurata kubanica, suggesting chromosomal polymorphism of this widely distributed, polytypic cobitid species. The polymorphic karyotypes of the golden loach may thus demonstrate transient stages, linking primitive and advanced cobitid karyotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号