首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.  相似文献   

2.
Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.  相似文献   

3.
Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.  相似文献   

4.
5.
We used two approaches to examine the role of NK T cells (NKT) in an intracellular bacterial (Chlamydia trachomatis mouse pneumonitis (C. muridarum)) infection. One is to use CD1 gene knockout (KO) mice, which lack NKT, and the other is to activate NKT using alpha-galactosylceramide (alpha-GalCer), a natural ligand of these cells. The data showed a promoting effect of NKT activation on Chlamydia lung infection. Specifically, CD1 KO mice exhibited significantly lower levels of body weight loss, less severe pathological change and lower chlamydial in vivo growth than wild-type mice. Immunological analysis showed that CD1 KO mice exhibited significantly lower C. muridarum-specific IL-4 and serum IgE Ab responses as well as more pronounced delayed-type hypersensitivity response compared with wild-type controls. In line with the finding in KO mice, the in vivo stimulation of NKT using alpha-GalCer enhanced chlamydial growth in vivo, which were correlated with reduced delayed-type hypersensitivity response and increased C. muridarum-driven IL-4/IgE production. Moreover, neutralization of IL-4 activity in the alpha-GalCer-treated BALB/c mice significantly reduced the promoting effect of alpha-GalCer treatment on chlamydial growth in vivo. These data provide in vivo evidence for the involvement of NKT in a bacterial pathogenesis and its role in promoting Th2 responses during infection.  相似文献   

6.
Plant parasitic nematodes cause severe damage to cultivated crops globally. Management of nematode population is a major concern as chemicals used as nematicides have negative impact on the environment. Natural plant products can be safely used for the control of nematodes. Among various plant metabolites, plant hormones play an essential role in developmental and physiological processes and also assist the plants to encounter stressful conditions. Keeping this in mind, the present study was designed to evaluate the effect of jasmonic acid (JA) on the growth, pigments, polyphenols, antioxidants, osmolytes, and organic acids under nematode infection in tomato seedlings. It was observed that nematode inoculation reduced the growth of seedlings. Treatment with JA improved root growth (32.79%), total chlorophylls (71.51%), xanthophylls (94.63%), anthocyanins (37.5%), and flavonoids content (21.11%) when compared to inoculated seedlings alone. The JA application enhanced the total antioxidant capacity (lipid- and water-soluble antioxidants) by 38.23 and 34.37%, respectively, in comparison to infected seedlings. Confocal studies revealed that there was higher accumulation of glutathione in hormone-treated seedlings under nematode infection. Treatment with JA increased total polyphenols content (74.56%) in comparison to nematode-infested seedlings. JA-treated seedlings also enhanced osmolyte and organic acid contents under nematode stress. Overall, treatment with JA improved growth, enhanced pigment levels, modulated antioxidant content, and enhanced osmolyte and organic acid content in nematode-infected seedlings.  相似文献   

7.
Type I IFN is key to the immune response to viral pathogens, however its role in bacterial infections is less well understood. Mice lacking the type I IFN receptor (IFNAR-/-) demonstrate enhanced resistance to infection with Listeriamonocytogenes. We have now determined that following infection with Listeria, the composition of innate cells recruited to the peritoneal cavity of IFNAR-/- mice reflects an increase in the frequency of neutrophils and a decrease in monocyte frequency compared to WT controls. These differences in inflammatory infiltrates could not be attributed to distinct bone marrow composition prior to infection or to level of apoptosis. We also observed no differences in neutrophil oxidative burst. However, blocking CXCR2 prevented enhanced neutrophil influx and hampered bacterial clearance. Taken together, these studies highlight a novel mechanism by which type I interferon signaling regulates the immune response to Listeria, through negative regulation of chemokines driving neutrophil recruitment.  相似文献   

8.
Effect of microgravity on recovery of bacterial cells from radiation damage was examined in IML-2, S/MM-4 and S/MM-9 experiments using the extremely radioresistant bacterium Deinococcus radiodurans. The cells were irradiated with gamma rays before the space flight and incubated on board the Space Shuttle. The survival of the wild type cells incubated in space increased compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under the space environment. No difference was observed between the survivals of radiosensitive mutant rec30 cells incubated in space and on the ground. The amount of DNA-repair related RecA protein induced under microgravity was similar to those of ground controls, however, induction of PprA protein, product of a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance in repair-deficient mutant, KH311, was enhanced under microgravity compared with ground controls. Recent investigation in vitro showed that PprA preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalyzed by DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining (NHEJ) repair mechanism in which PprA plays a critical role.  相似文献   

9.
Dendritic cells (DCs) as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye). We used CD11c-diphtheria toxin (DT) mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS) by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.  相似文献   

10.
While intense negative events are vividly recalled, information learned during stressful situations is poorly remembered. These differential effects of emotions and stress on memory have been attributed to the physiological manifestations generated during those affective states. Intense emotional and stressful events trigger the secretion of catecholamines and of glucocorticoids, in particular. These hormones would be modulatory agents of memory functions. In the first part of this paper, we review the specific effects emotions and stress have on memory. We then summarize the psychological and biological determinants responsible for these effects. Finally, we discuss different methodological issues that could explain the discrepancy found between the impact of emotions and stress on memory. Defining more precisely the effects emotion and stress have on memory will lead to a better comprehension of the cognitive problems that characterize patients dealing with emotional turmoil, such as patients suffering from depression or post-traumatic stress disorder.  相似文献   

11.
The Drosophila Turandot A (TotA) gene was recently shown to encode a stress-induced humoral factor which gives increased resistance to the lethal effects of high temperature. Here we show that TotA belongs to a family of eight Tot genes distributed at three different sites in the Drosophila genome. All Tot genes are induced under stressful conditions such as bacterial infection, heat shock, paraquat feeding or exposure to ultraviolet light, suggesting that all members of this family play a role in Drosophila stress tolerance. The induction of the Tot genes differs in important respects from the heat shock response, such as the strong but delayed response to bacterial infection seen for several of the genes.  相似文献   

12.
饲喂重组鸡白细胞介素18蛋白增加肉仔鸡体重的初步研究   总被引:4,自引:0,他引:4  
经口服途径给肉仔鸡饲喂重组鸡白细胞介素 1 8(ChIL -1 8)蛋白,观察其在正常饲养条件下和人工感染鸡传染性支气管炎病毒 (IBV)时对肉仔鸡的影响。将 84只肉仔鸡随机分为 2组:正常称重组和IBV接种组。 2组肉仔鸡再随机各分为 3个亚组,分别每隔 5d各口服 1次PBS、细菌蛋白和重组ChIL -1 8蛋白。正常称重组每亚组 8只,每次口服前称重。IBV接种试验组每亚组 2 0只,在 30日龄时滴鼻接种IBVM41株并每隔 5d称重 1次。各亚组试验鸡分别在正压隔离器中饲养。结果表明,饲喂重组ChIL- 1 8蛋白的试验亚组肉仔鸡体重总增重量明显高于饲喂PBS和细菌蛋白的对照亚组;IBV接种试验组肉仔鸡在人工感染IBVM41株后,饲喂重组ChIL 1 8亚组的发病率和死亡率明显低于饲喂PBS和细菌蛋白亚组,而且后 2个亚组肉仔鸡临床症状也较饲喂重组ChIL- 1 8试验亚组明显。结果初步显示,饲喂重组ChIL -1 8融合蛋白能够增加肉仔鸡体重并可增强肉仔鸡对IBV感染的抵抗能力。  相似文献   

13.
The susceptibility of bacteria-infected fibroblasts to the cytotoxic action of tumor necrosis factor was investigated. L cells infected with Shigella flexneri, Salmonella typhimurium, or Listeria monocytogenes, had an enhanced susceptibility to the cytotoxic activity of TNF-alpha. This enhanced susceptibility was dependent upon the challenge dose of bacteria, the concentration of TNF, and upon the exposure time of bacteria-infected cells to TNF. L cells infected with S. flexneri were susceptible to the cytotoxic action of TNF at 2 to 6 h after bacterial infection. In contrast, L cells infected with S. typhimurium or L. monocytogenes did not show enhanced susceptibility to TNF until 14 h postbacterial infection and exposure to TNF. Enhanced susceptibility to TNF was dependent on bacterial invasion because fibroblasts pretreated with a noninvasive isogenic variant of S. flexneri, UV-treated invasive bacteria, bacterial cultural supernatant, or bacteria LPS were no more susceptible to TNF than untreated cells. Enhanced susceptibility to TNF by bacteria-infected cells was not unique to L cells. Mouse embryo fibroblasts and HeLa cells also showed similar reactivities after bacteria infection. Bacteria-infected cells were greatly suppressed in host cell protein synthesis that may play an important role in their enhanced susceptibility to TNF. These results suggest that an important role of TNF in host defense against bacterial infections is its cytotoxic activity against bacteria-infected cells.  相似文献   

14.
15.
16.
Chaotic transitions likely emerge in a wide variety of cognitive phenomena and may be linked to specific changes during the development of mental disorders. They represent relatively short periods in the behavior of a system, which are extremely sensitive to very small changes. This increased sensitivity has been suggested to occur also during retrieval of stressful emotional experiences because of their fragmentary, temporally and spatially disorganized character. To test this hypothesis we recorded EEG during retrieval of fearful memories related to panic attack in 7 patients and retrieval of anxiety-related memories in 11 healthy controls. Nonlinear data analysis of EEG records showed a statistically significant increase in degree of chaotic dynamics after retrieval of stressful memories in majority of patients as well as in control subjects. This change correlated with subjective intensity of anxiety induced during the memory retrieval. The data suggest a role of nonlinear changes of neural dynamics in the processing of stressful anxiety-related memories, which may play an important role in the pathophysiology of panic disorder.  相似文献   

17.
Increased morbidity and mortality occur regularly during influenza epidemics. The exact mechanisms involved are not well defined but bacterial superinfection of influenza virus infected patients is considered to play an important role. In the present study, the effect of influenza virus infection on in vivo production of turnout necrosis factor (TNF) in response to bacterial stimuli was investigated. Release of TNF in mice infected by an aerosol of influenza virus was significant after administration of bacterial lipopolysaccharide (LPS) at 72 h, whereas administration of homologous influenza virus produced only modest amounts of TNF at 96 h. Significant production of TNF was observed 48 h after intravenous administration of infectious influenza in response to LPS but not with the homologous virus. TNF induced after influenza virus infection could be blocked by a specific murine anti-TNF monoclonal antibody. Higher TNF production following aerosol influenza infection correlated with peak titres of influenza virus in the lungs of infected mice and with enhanced generation of luminoldependent chemiluminscence.  相似文献   

18.
The severity of bovine respiratory infections has been linked to a variety of factors, including environmental and nutritional changes, transportation, and social reorganization of weaned calves. Fatal respiratory infections, however, usually occur when a primary viral infection compromises host defences and enhances the severity of a secondary bacterial infection. This viral-bacterial synergy can occur by a number of different mechanisms and disease challenge models have been developed to analyse host responses during these respiratory infections. A primary bovine herpesvirus-1 (BHV-1) respiratory infection followed by a secondary challenge with Mannheimia haemolytica results in fatal bovine respiratory disease (BRD) and host responses to these two pathogens have been studied extensively. We used this disease model to demonstrate that stress significantly altered the viral-bacterial synergy resulting in fatal BRD. Functional genomic analysis revealed that BHV-1 infection enhanced toll-like receptors (TLR) expression and increased pro-inflammatory responses which contribute to the severity of a Mannheimia haemolytica infection. TLRs play a critical role in detecting bacterial infections and inducing pro-inflammatory responses. It is difficult to understand, however, how stress-induced corticosteroids could enhance this form of viral-bacterial synergy. Nuclear translocation of the glucocorticoid receptor activates cell signalling pathways which inhibit both TLR signalling and pro-inflammatory responses. The apparent conundrum between stress-induced corticosteroids and enhanced BRD susceptibility is discussed in terms of present data and previous investigations of stress and respiratory disease.  相似文献   

19.
In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.  相似文献   

20.
Park YH  Choi C  Park EM  Kim HS  Park HJ  Bae SC  Ahn I  Kim MG  Park SR  Hwang DJ 《Plant cell reports》2012,31(10):1845-1850
Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号