首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the distribution of the myosin heavy chain (MHC) isoforms (I, IIa, IIx) of the leg muscles of three groups of men and women (40 +/- 8y) that completed unilateral lower limb suspension only (ULLS), ULLS plus resistance exercise (ULLS+RE), or RE only (RE) for 5 weeks. Muscle biopsies were obtained pre and post from the vastus lateralis of all three groups and the soleus of the ULLS group. Distributions of all three MHC isoforms in the vastus lateralis were unchanged (p<0.05) from pre to post with ULLS. The soleus muscle, which contained no measurable IIx isoform, was also unchanged (p< 0.05) from pre to post ULLS. These results suggest that the percent distribution of the MHC isoforms per unit muscle protein in both the vastus lateralis and soleus does not change during the first five weeks of simulated microgravity. Further, resistance exercise during five weeks of ULLS or ambulation does not appear to alter the MHC distribution per unit muscle protein of the vastus lateralis.  相似文献   

2.
We examined the effects of 35 and 90 days of simulated microgravity with or without resistance-exercise (RE) countermeasures on the content of the general skeletal muscle protein fractions (mixed, sarcoplasmic, and myofibrillar) and specific proteins that are critical for muscle function (myosin, actin, and collagen). Subjects from two studies, using either unilateral lower limb suspension (ULLS) or bed rest (BR), comprised four separate groups: 35 days ULLS (n =11), 35 days ULLS+RE (n = 10), 90 days BR (n = 9), and 90 days BR+RE (n = 8). RE consisted of four sets of seven maximal concentric and eccentric repetitions of the quadriceps femoris muscles that were performed 2 or 3 times per week. Pre- and post-simulated weightlessness muscle biopsies were analyzed from the vastus lateralis of all groups and the soleus of the 35-day ULLS and 90-day BR groups. The general protein fractions and the specific proteins myosin, actin, and collagen of the vastus lateralis were unchanged (P > 0.05) in both control and countermeasures groups over 35 and 90 days, despite large changes in quadriceps femoris muscle volume (35 days ULLS: -9%, 35 days ULLS+RE: +8%; and 90 days BR: -18%, 90 days BR+RE: -1%). The soleus demonstrated a decrease in mixed (35 days ULLS: -12%, P = 0.0001; 90 days BR: -12%, P = 0.004) and myofibrillar (35 days ULLS: -12%, P = 0.009; 90 days BR: -8%, P = 0.04) protein, along with large changes in triceps surae muscle volume (35 days ULLS: -11%; 90 days BR: -29%). Despite the loss of quadriceps femoris muscle volume or preservation with RE countermeasures during simulated microgravity, the quadriceps femoris muscles are able to maintain the concentrations of the general protein pools and the main contractile and connective tissue elements. Soleus muscle protein composition appears to be disproportionately altered during long-duration simulated weightlessness.  相似文献   

3.
The purpose of this study was to investigate potential differences in single-fiber contractile physiology of fibers with the same myosin heavy chain isoform (MHC I and MHC IIa) originating from different muscles. Vastus lateralis (VL) and soleus biopsies were obtained from 27 recreationally active females (31 +/- 1 yr, 59 +/- 1 kg). A total of 943 single fibers (MHC I = 562; MHC IIa = 301) were isolated and examined for diameter, peak tension (Po), shortening velocity (Vo), and power. The soleus had larger (P < 0.05) fibers (MHC I +18%; MHC IIa +19%), higher MHC I Vo (+13%), and higher MHC I Po (+18%) compared with fibers from the VL. In contrast, fibers from the VL had higher (P < 0.05) specific tension (MHC I +18%; MHC IIa +20%), and MHC I normalized power (+25%) compared with the soleus. There was a trend for MHC IIa soleus fibers to have higher Vo [MHC IIa +13% (P = 0.058)], whereas VL MHC IIa fibers showed a trend for higher normalized power compared with soleus fibers [MHC IIa +33% (P = 0.079)]. No differences in absolute power were detected between muscles. These data highlight muscle-specific differences in single-fiber contractile function that should serve as a scientific basis for consideration when extending observations of skeletal muscle tissue from one muscle of interest to other muscles of origin. This is important when examining skeletal muscle adaptation to physical states such as aging, unloading, and training.  相似文献   

4.
Previously, it has been shown that the human ground-based model consisting of unilateral limb suspension (ULLS) induces atrophy and reduced strength of the affected quadriceps muscle group. Resistance exercise (RE) involving concentric-eccentric actions, in the face of ULLS, is effective in ameliorating these deficits. The goal of the present study was to determine whether alterations in contractile protein gene expression, e.g., myosin heavy chain and actin, as studied at the pretranslational level, provide molecular markers concerning the deficits that occur in muscle mass/volume during ULLS, as well as its maintenance in response to ULLS plus RE. Muscle biopsies were obtained from the vastus lateralis muscle of 31 middle-aged men and women before and after 5 wk of ULLS, ULLS plus RE, or RE only. The RE paradigm consisted of 12 sessions of 4 sets of 7 concentric-eccentric knee extensions. Our findings show that there were net deficits in total RNA, total mRNA, and actin and myosin heavy chain mRNA levels of expression after ULLS (P < 0.05), whereas these alterations were blunted in the two groups receiving RE. Additional observations involving IGF-I and its associated receptor and binding proteins suggest that RE postures the skeletal muscle for signaling processes that favor a greater anabolic state relative to that observed in the ULLS group. Collectively, these findings suggest that molecular markers of contractile protein gene expression serve as useful subcellular indicators for ascertaining the underlying mechanisms regulating alterations in muscle mass in human subjects in response to altered loading states.  相似文献   

5.
The soleus muscle has been consistently shown to atrophy more than other leg muscles during unloading and is difficult to protect using various exercise countermeasure paradigms. However, the efficacy of aerobic exercise, a known stimulus for oxidative adaptations, has not been tested in combination with resistance exercise (RE), a known hypertrophic stimulus. We hypothesized that a concurrent exercise program (AE + RE) would preserve soleus fiber myosin heavy chain (MHC) I size and function during 60 days of bed rest. A secondary objective was to test the hypothesis that a leucine-enriched high protein diet would partially protect soleus single fiber characteristics. Soleus muscle biopsies were obtained before and after bed rest from a control (BR; n = 7), nutrition (BRN; n = 8), and exercise (BRE; n = 6) group. Single muscle fiber diameter (Dia), peak force (Po), contractile velocity, and power were studied. BR decreased (P < 0.05) MHC I Dia (-14%), Po (-38%), and power (-39%) with no change in contractile velocity. Changes in MHC I size (-13%) and contractile function (approximately 30%) from BRN were similar to BR. BRE decreased (P < 0.05) MHC I Dia (-13%) and Po (-23%), while contractile velocity increased (P < 0.05) 26% and maintained power. These soleus muscle data show 1) the AE + RE exercise program maintained MHC I power but not size and strength, and 2) the nutrition countermeasure did not benefit single fiber size and contractile function. The divergent response in size and functional MHC I soleus properties with the concurrent exercise program was a unique finding further highlighting the challenges of protecting the unloaded soleus.  相似文献   

6.
We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.  相似文献   

7.
Lipoprotein lipase (LPL) is a key enzyme for fatty acid and lipoprotein metabolism in muscle. However, the effect of aging on LPL regulation in skeletal muscle is unknown. We report the effect of aging on LPL regulation in the soleus (red oxidative postural) muscle and the tibialis anterior (white glycolytic non-weight-bearing) muscle in 4- and 24-mo-old Fischer 344 rats and 18- and 31-mo-old Fischer 344 x Brown-Norway F1 (F-344 x BN F1) rats. Total and heparin-releasable LPL (HR-LPL) activities were decreased 38% (P < 0.01) and 52% (P < 0.05), respectively, in the soleus muscle of the older Fischer 344 rats. There was a 32% reduction (P < 0.05) of total LPL protein mass in the soleus muscle with aging. The results were confirmed in another strain. A decrease of total LPL activity (-50%, P < 0.05) was also found in the soleus muscle between 18- and 31-mo-old F-344 x BN F1 rats. LPL mRNA concentration in the soleus muscle was not different between ages. Total LPL protein mass was reduced by 46% (P < 0.05) in the soleus muscle of the 31-mo-old F-344 x BN F1 rats. In the tibialis anterior muscle, neither LPL activity nor mRNA concentration was affected by age in either strain. In conclusion, LPL regulation in a non-weight-bearing muscle was not affected by aging. However, there was a pronounced reduction in LPL activity and LPL protein mass in postural muscle with aging.  相似文献   

8.
The goal of this study was to use the model of spinal cord isolation (SI), which blocks nearly all neuromuscular activity while leaving the motoneuron muscle-fiber connections intact, to characterize the cellular processes linked to marked muscle atrophy. Rats randomly assigned to normal control and SI groups were studied at 0, 2, 4, 8, and 15 days after SI surgery. The slow soleus muscle atrophied by approximately 50%, with the greatest degree of loss occurring during the first 8 days. Throughout the SI duration, muscle protein concentration was maintained at the control level, whereas myofibrillar protein concentration steadily decreased between 4 and 15 days of SI, and this was associated with a 50% decrease in myosin heavy chain (MHC) normalized to total protein. Actin relative to the total protein was maintained at the control level. Marked reductions occurred in total RNA and DNA content and in total MHC and actin mRNA expressed relative to 18S ribosomal RNA. These findings suggest that two key factors contributing to the muscle atrophy in the SI model are 1). a reduction in ribosomal RNA that is consistent with a reduction in protein translational capacity, and 2). insufficient mRNA substrate for translating key sarcomeric proteins comprising the myofibril fraction, such as MHC and actin. In addition, the marked selective depletion of MHC protein in the muscles of SI rats suggests that this protein is more vulnerable to inactivity than actin protein. This selective MHC loss could be a major contributor for the previously reported loss in the functional integrity of SI muscles. Collectively, these data are consistent with the involvement of pretranslational and translational processes in muscle atrophy due to SI.  相似文献   

9.
Intrinsic muscle abnormalities affecting skeletal muscle are often reported during chronic heart failure (CHF). Because myosin is the molecular motor of force generation, we sought to determine whether its dysfunction contributes to skeletal muscle weakness in CHF and, if so, to identify the underlying causative factors. Severe CHF was induced in rats by aortic stenosis. In diaphragm and soleus muscles, we investigated in vitro mechanical performance, myosin-based actin filament motility, myosin heavy (MHC) and light (MLC) chain isoform compositions, MLC integrity, caspase-3 activation, and oxidative damage. Diaphragm and soleus muscles from CHF exhibited depressed mechanical performance. Myosin sliding velocities were 16 and 20% slower in CHF than in sham in diaphragm (1.9 +/- 0.1 vs. 1.6 +/- 0.1 microm/s) and soleus (0.6 +/- 0.1 vs. 0.5 +/- 0.1 microm/s), respectively (each P < 0.05). The ratio of slow-to-fast myosin isoform did not differ between sham and CHF. Immunoblots with anti-MLC antibodies did not detect the presence of protein fragments, and no activation of caspase-3 was evidenced. Immunolabeling revealed oxidative damage in CHF muscles, and MHC was the main oxidized protein. Lipid peroxidation and expression of oxidized MHC were significantly higher in CHF than in shams. In vitro myosin exposure to increasing ONOO(-) concentrations was associated with an increasing amount of oxidized MHC and a reduced myosin velocity. These data provide experimental evidence that intrinsic myosin dysfunction occurs in CHF and may be related to oxidative damage to myosin.  相似文献   

10.
We tested the hypothesis that a force reduction in hyperthyroid rat soleus muscle would be associated with oxidative modification in myosin heavy chain (MHC). Daily injection of thyroid hormone [3,5,3'-triiodo-L-thyronine (T3)] for 21 days depressed isometric forces of whole soleus muscle across a range of stimulus frequencies (P < 0.01). In fiber bundles, hyperthyroidism also led to pronounced reductions (P < 0.01) in both K+ - and 4-chloro-m-cresol-induced contracture forces. The degrees of the reductions were similar between these two contractures that were induced by distinct reagents. Treatment with T3 elicited a significant decrease ( approximately 14%; P < 0.05) in the relative content of MHC contained in myofibrillar proteins. The content of carbonyl groups in myofibrillar protein extracts was elevated (P < 0.05) by approximately 50% in T3-treated muscles. Immunoblot analyses on T3-treated muscles showed a greater increase (106%; P < 0.05) of the carbonyl content in MHC than in myofibrillar protein extracts. These data suggest that in hyperthyroidism the decrease in force production of skeletal muscles may stem primarily from failure in myofibrillar protein function resulting from oxidative modification of MHC.  相似文献   

11.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

12.
目的:研究不同强度运动对骨骼肌纤维MHC亚型转化及钙调神经磷酸酶(CaN)/活化T细胞核因子1(NFATc1)信号通路的影响。方法:雄性SD大鼠(2月龄)24只,随机分为3组(n=8):正常对照组(NC)、中等强度组(ME)、大强度组(HE),进行8周跑台训练。采用ATP酶染色法测定I、Ⅱ型肌纤维,凝胶电泳技术分离肌球蛋白重链(MHC)亚型,比色法测定骨骼肌中CaN活性,免疫印迹技术测定骨骼肌NFATc1蛋白含量。结果:①肌纤维密度变化:股四头肌ME组I、Ⅱ型纤维数密度均显著增加(P<0.05),HE组仅Ⅱ型纤维面密度显著增加(P<0.05);比目鱼肌HE、ME组I型纤维数密度均显著增加(P<0.05);②肌纤维MHC亚型百分比变化:股四头肌ME组MHCI、Ⅱa百分比升高(P<0.05),而MHCⅡb百分比降低(P<0.05);比目鱼肌MHCI百分比升高,MHCⅡa、Ⅱb百分比降低;③ME组大鼠CaN活性、NFAT1蛋白含量均显著升高(P<0.05)。结论:大、中等强度运动可诱导骨骼肌MHC快型向慢型转化,同时伴随肌纤维亚型变化骨骼肌中CaN活性增加、NFATc1蛋白表达增加。  相似文献   

13.
The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.  相似文献   

14.
In this study the model of 7-day dry immersion (DI) was used. 17 male volunteers (23-29 years old) were divided in 2 groups: (i) 7-day DI without support (DI, n=9), (ii) 7-day DI using support stimulation (DIS, n=8). Support stimulator device exerted pressure of 0.2 +/- 0.15 kg/cm2 upon the plantar support zones simulating the walking pattern 6 times a day for 20 minutes of every hour: 10 minutes at a speed of 75 steps/min and 10 minutes at a speed of 120 steps/min. M. soleus biopsy was performed before and immediately after DI. The m. soleus fiber myosin heavy chain (MHC) profile, myofiber cross-sectional area (CSA) and total protein concentration were analyzed in frozen serial sections. In addition, NO-synthase 1 (NOS1) levels indicative of normal muscle cell signaling were analyzed by western blotting in 4 persons in each group. After dry immersion, percentage of muscle fibers containing type I MHC decreased by 6% (p<0.05) in group DI, but was not changed significantly in group DIS. Percentage of the type IIa fibers was significantly altered in none of the groups. Type I fiber CSA decreased by 24.4% (p<0.05) in group DI. No significant changes of type I fiber CSA were found in group DIS. CSA of the type IIa fibers significantly altered in none of the groups. The total protein concentration was found increased by 17.6% in group DI and by 21% in group DIS. The increased total protein content in group DI suggests a diminution of fiber CSA attributed to the loss of non-protein component of fibers. NOS1 decreased by 35.6% in group DI and increased by 58.1% in group DIS. We conclude that 7 days in dry immersion lead to reduction in the type I muscle fiber percentage, loss of the non-protein component and decline in NOS1. These changes were clearly prevented by the support stimulation protocol applied during the DI period.  相似文献   

15.
The purpose of this study was to characterize changes in mRNA expression of select proteolytic markers in human slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) single skeletal muscle fibers following a bout of resistance exercise (RE). Muscle biopsies were obtained from the vastus lateralis of eight young healthy sedentary men [23 +/- 2 yr (mean +/- SD), 93 +/- 17 kg, 183 +/- 6 cm] before and 4 and 24 h after 3 x 10 repetitions of bilateral knee extensions at 65% of one repetition maximum. The mRNA levels of TNF-alpha, calpains 1 and 2, muscle RING (really interesting novel gene) finger-1 (MuRF-1), atrogin-1, caspase-3, B-cell leukemia/lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) were quantified using real-time RT-PCR. Generally, MHC I fibers had higher (1.6- to 5.0-fold, P < 0.05) mRNA expression pre- and post-RE. One exception was a higher (1.6- to 3.9-fold, P < 0.05) Bax-to-Bcl-2 mRNA ratio in MHC IIa fibers pre- and post-RE. RE increased (1.4- to 4.8-fold, P < 0.05) MuRF-1 and caspase-3 mRNA levels 4-24 h post-RE in both fiber types, whereas Bax-to-Bcl-2 mRNA ratio increased 2.2-fold (P < 0.05) at 4 h post-RE only in MHC I fibers. These results suggest that MHC I fibers have a greater proteolytic mRNA expression pre- and post-RE compared with MHC IIa fibers. The greatest mRNA induction following RE was in MuRF-1 and caspase-3 in both fiber types. This altered and specific proteolytic mRNA expression among slow- and fast-twitch muscle fibers indicates that the ubiquitin/proteasomal and caspase pathways may play an important role in muscle remodeling with RE.  相似文献   

16.
  • 1.1. The effect of functional overload produced by tenotomy of synergistic gastrocnemius muscle on the expression of myosin heavy chain (MHC) isoforms in the plantaris and soleus muscles of the rat was studied using gradient sodium dodecyl sulfate-acrylamide gel electrophoresis.
  • 2.2. Five weeks tenotomy, the plantaris and soleus muscle weights induced by tenotomy of the gastrocnemius muscle were 44.3% (P < 0.005) and 37.4% (P < 0.005), respectively, heavier than the contralateral control muscles.
  • 3.3. Although four types of MHC isoforms were observed in both control and experimental plantaris, the percentage of MHC isoforms in the control and experimental muscles differed; the hypertrophied plantaris muscle contained more HCI (P < 0.05), HCIIa and HCIId (P < 0.05) and less HCIIb (P < 0.05) than the control muscle.
  • 4.4. The control soleus muscle contained two MHC isofonns, HCI and HCIIa. However, there was only a single HCI isoform in the hypertrophied soleus muscle.
  • 5.5. These results indicate that overloading a skeletal muscle by removing its synergists produces not only the muscle hypertrophy but also the changes in the expression of MHC isofonns.
  相似文献   

17.
Chronic heart failure is characterized by changes in skeletal muscle that contribute to physical disability. Most studies to date have investigated defects in skeletal muscle oxidative capacity. In contrast, less is known about how heart failure affects myofibrillar protein metabolism. Thus we examined the effect of heart failure on skeletal muscle myofibrillar protein metabolism, with a specific emphasis on changes in myosin heavy chain (MHC) protein content, synthesis, and isoform distribution in 10 patients with heart failure (63 +/- 3 yr) and 11 controls (70 +/- 3 yr). In addition, we examined the relationship of MHC protein metabolism to inflammatory markers and physical function. Although MHC and actin protein content did not differ between groups, MHC protein content decreased with increasing disease severity in heart failure patients (r = -0.748, P < 0.02), whereas actin protein content was not related to disease severity. No difference in MHC protein synthesis was found between groups, and MHC protein synthesis rates were not related to disease severity. There were, however, relationships between C-reactive protein and both MHC protein synthesis (r = -0.442, P = 0.05) and the ratio of MHC to mixed muscle protein synthesis (r = -0.493, P < 0.03). Heart failure patients showed reduced relative amounts of MHC I (P < 0.05) and a trend toward increased MHC IIx (P = 0.06). In regression analyses, decreased MHC protein content was related to decreased exercise capacity and muscle strength in heart failure patients. Our results demonstrate that heart failure affects both the quantity and isoform distribution of skeletal muscle MHC protein. The fact that MHC protein content was related to both exercise capacity and muscle strength further suggests that quantitative alterations in MHC protein may have functional significance.  相似文献   

18.
The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5 degrees C (cold) or 25 degrees C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was approximately 28% lower in skeletal muscle (gastrocnemius and soleus) and approximately 24% higher in heart in cold compared with control rats (P < 0.05). In skeletal muscle, the fractional rates of protein synthesis (k(syn)) and degradation (k(deg)) were not significantly different between cold and control rats, although k(syn) was lower (approximately -26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately -21%; P < 0. 05) and degradation (approximately -13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k(syn) (approximately +12%; P < 0.1) and k(deg) (approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats (P < 0.05). Plasma triiodothyronine concentration was higher (P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.  相似文献   

19.
We examined intramuscular endomysial collagen, cross-linking, and advanced glycation end products, as well as the general and contractile protein concentration of 20 young (25 +/- 3 yr) and 22 old (78 +/- 6 yr, range: 70-93 yr) sedentary men and women to better understand the underlying basis of changes in skeletal muscle mass and function that occur with aging. The old individuals had an impaired ability (increased time) (P < 0.05) to climb stairs (80%), rise from a chair (56%), and walk (44%), as well as lower (P < 0.05) quadriceps muscle volume (-29%), muscle strength (-35%), muscle power (-48%), and strength (-17%) and power (-33%) normalized to muscle size. Vastus lateralis muscle biopsies revealed that intramuscular endomysial collagen (young: 9.6 +/- 1.1, old: 10.2 +/- 1.2 microg/mg muscle wet wt) and collagen cross-linking (hydroxylysylpyridinoline) (young: 395 +/- 65, old: 351 +/- 45 mmol hydroxylysylpyridinoline/mol collagen) were unchanged (P > 0.05) with aging. The advanced glycation end product, pentosidine, was increased (P < 0.05) by approximately 200% (young: 5.2 +/- 1.3, old: 15.9 +/- 4.5 mmol pentosidine/mol collagen) with aging. While myofibrillar protein concentration was lower (-5%, P < 0.05), the concentration of the main contractile proteins myosin and actin were unchanged (P > 0.05) with aging. These data suggest that the synthesis and degradation of proteins responsible for the generation (myosin and actin) and transfer (collagen and pyridinoline cross-links) of muscle force are tightly regulated in aging muscle. Glycation-related cross-linking of intramuscular connective tissue may contribute to altered muscle force transmission and muscle function with healthy aging.  相似文献   

20.
Skeletal muscle responses to lower limb suspension in humans.   总被引:8,自引:0,他引:8  
Eight subjects participated in a 6-wk unilateral lower limb suspension (ULLS) study to determine the influence of reduced weight bearing on human skeletal muscle morphology. The right shoe was outfitted with a platform sole that prevented the left foot from bearing weight while walking with crutches, yet it allowed freedom of movement about the ankle, knee, and hip. Magnetic resonance images pre- and post-ULLS showed that thigh muscle cross-sectional area (CSA) decreased (P less than 0.05) 12% in the suspended left lower limb, whereas right thigh muscle CSA did not change. Likewise, magnetic resonance images collected post-ULLS showed that muscle CSA was 14% smaller (P less than 0.05) in the left than in the right leg. The decrease in muscle CSA of the thigh was due to a twofold greater response of the knee extensors (-16%, P less than 0.05) than knee flexors (-7%, P less than 0.05). The rectus femoris muscle of the knee extensors showed no change in CSA, whereas the three vastus muscles showed similar decreases of approximately 16% (P less than 0.05). The apparent atrophy in the leg was due mainly to reductions in CSA of the soleus (-17%) and gastrocnemius muscles (-26%). Biopsies of the left vastus lateralis pre- and post-ULLS showed a 14% decrease (P less than 0.05) in average fiber CSA. The decrease was evident in both type I (-12%) and II (-15%) fibers. The number of capillaries surrounding the different fiber types was unchanged after ULLS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号