首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen-induced hamster kidney tumor model serves as a useful model to study the biochemical and molecular mechanisms of hormonal carcinogenesis. In this model, we have demonstrated an increased expression of estrogen receptor mRNA and protein in estrogen-treated kidneys and in estrogen-induced tumors. The sequence information for hamster estrogen receptor gene is not known and has been investigated in this study. A hamster uterus cDNA library was constructed and the 5'-region of the hamster estrogen receptor cDNA cloned from this library using polymerase chain reaction (PCR) methodology. Additionally, hamster kidney polyadenylated RNA was reverse transcribed and PCR amplified using primers that were designed based on maximum homology between mouse, rat and human estrogen receptor cDNAs. These PCR amplified fragments were cloned into plasmid vectors and clones with the expected size of the insert subjected to Southern blot analysis using human estrogen receptor cDNA as a probe. The positive clones on Southern blot analysis and the PCR amplified products from these clones were subjected to DNA sequence analysis. Using this strategy, a full length, 1978 bp hamster estrogen receptor cDNA has been cloned which shows 87% homology with human, 90% with rat and 91% with mouse estrogen receptor cDNA. The deduced amino acid shares 88% homology with human, and 93% with rat and mouse estrogen receptors. Hamster estrogen receptor domain C (DNA binding domain) shows a 100% homology with a similar domain from mouse, rat, human, pig, sheep, horse and chicken estrogen receptor (Genebank reference ID: AF 181077).  相似文献   

2.
Antioxidant enzyme (AE) activities were studied in normal hamster kidney proximal tubules and in estrogen-induced hamster kidney cancer. In vivo, kidney tumor had lower activities of manganese superoxide dismutase (MnSOD), copper, zinc superoxide dismutase, catalase, and glutathione peroxidase than kidney proximal tubules. Differences in AE activities were, in general, maintained in tissue culture, with AE activities remaining low in tumor cells compared to normal cells. Normal proximal tubular cells showed significant induction of MnSOD activity as a function of time in culture of following exposure to diethylstilbestrol, a synthetic estrogen, while MnSOD activity remained low in tumor cells under these conditions. Our results suggest that antioxidant enzymes, particularly MnSOD, are regulated differently in estrogen-induced hamster kidney tumor cells than in normal kidney proximal tubular cells, demonstrating that cancers arising from hormonal influence have similar AE profiles to those previously described in cancers arising from viral or chemical etiologies.  相似文献   

3.
I-compounds are non-polar covalent DNA modifications of as yet undetermined structure that tend to accumulate in an age-dependent manner in tissues of untreated animals. They are detectable by 32P-postlabeling assay because of their adduct-like properties and chromatographically resemble DNA nucleotides containing bulky/hydrophobic moieties. To determine which factors may be involved in their formation, I-compounds were examined by 32P-postlabeling in liver and kidney DNA of female and male Sprague-Dawley rats and Syrian hamsters of different ages (1, 4 and 10 months and 1, 2.5 and 9.5 months, respectively). The following results were obtained: (i) Every tissue DNA studied contained characteristic I-compounds. (ii) Patterns and amounts of I-compounds were reproducible among animals of the same kind. (iii) There were pronounced organ and species differences. (iv) I-compound patterns were sex-dependent. (v) I-compound levels increased with age in all tissues studied, except in male hamster kidney, a target organ of estrogen-induced carcinogenesis. The highest levels were observed in liver and kidney of 10-month-old female rats. (vi) The rise of I-compound levels was less steep during the later part of the observation period for female but not male animals. (vii) Gonadectomy decreased I-compound levels in female hamster kidney DNA, while causing a slight increase in male animals later in life. These I-compounds were identical to previously reported DNA modifications that increased in male hamster kidneys after prolonged estrogen treatment. Points, iv, vi and vii strongly implicated sex hormones in I-compound formation. The qualitative effects of species, tissue differentiation, gender and sex hormones on these DNA modifications support the hypothesis that I-compounds are formed by the binding of endogenous electrophiles to DNA. As persistent DNA alterations, they are likely to affect DNA replication and to play a role in spontaneous and chemically induced carcinogenesis and in aging.  相似文献   

4.
Estrogen, DNA damage and mutations   总被引:13,自引:0,他引:13  
Roy D  Liehr JG 《Mutation research》1999,424(1-2):107-115
Estrogen administration to rodents results in various types of DNA damage and ultimately leads to tumors in estrogen-responsive tissues. Yet these hormones have been classified as nonmutagenic, because they did not induce mutations in classical bacterial and mammalian mutation assays. In this review, we have discussed the induction by estrogens of DNA and chromosomal damage and of gene mutations, because the classical assays were designed to uncover mutations only at one specific locus and could not have detected other types of mutations or changes in other genes. Various types of estrogen-induced DNA damage include: (a) direct covalent binding of estrogen quinone metabolites to DNA; (b) enhancement of endogenous DNA adducts by chronic estrogen exposure of rodents; (c) free radical generation by metabolic redox cycling between quinone and hydroquinone forms of estrogens and free radical damage to DNA such as strand breakage, 8-hydroxylation of purine bases of DNA and lipid hydroperoxide-mediated DNA modification. Two different types of chromosomal damage have also been induced by estrogen in vivo and in cells in culture such as numerical chromosomal changes and also structural chromosomal aberrations. Gene mutations have been induced in several cell types in culture either by the parent estrogen or by reactive estrogen quinone metabolites. Furthermore, in estrogen-induced kidney tumors in hamsters, several mutations have been observed in the DNA polymerase beta gene mRNA. Estradiol also induces microsatellite instability in these kidney tumors and in premalignant kidney exposed to estradiol. Although this work is still ongoing, it can be concluded that estrogens are complete carcinogens capable of tumor initiation by mutation potentially in critical genes. The hormonal effects of estrogens may complete the development of tumors.  相似文献   

5.
Supercoiled BK papovavirus DNA was shown to transform hamster kidney cells using the calcium phosphate co-precipitation technique. The transformed cells contained intranuclear T-antigen(s) and rescuable virus and produced progressively growing tumors when inoculated into hamsters. A novel finding was the production in tumor-bearing animals of antinuclear antibody, which reacted against normal, untransformed cells; in addition, tumor serum contained antibody against virus-specific T-antigen(s).  相似文献   

6.
Supercoiled BK papovavirus DNA was shown to transform hamster kidney cells using the calcium phosphate co-precipitation technique. The transformed cells contained intranuclear T-antigen(s) and rescuable virus and produced progressively growing tumors when inoculated into hamsters. A novel finding was the production in tumor-bearing animals of antinuclear antibody, which reacted against normal, untransformed cells; in addition, tumor serum contained antibody against virus-specific T-antigen(s).  相似文献   

7.
The cellular origin of estrogen-induced kidney tumors in male Syrian hamsters has been repeatedly the subject of controversy. Several authors have proposed that the tumors arise from proximal tubules, from a combination of tubular and interstitial stromal cells, or solely from interstitial cells. Because of the model character of this tumor for hormone-associated cancer, it was further investigated in this study with respect to morphology, enzyme and intermediate filament pattern, the expression of alpha-smooth muscle actin and the extracellular matrix proteins fibronectin and tenascin. These analyses were carried out with early and late tumors as well as metastases to determine possible changes in expression of biochemical parameters during the development and progression of this neoplasm. The enzyme histochemical and intermediate filament patterns were usually the same as those described previously for proliferative foci and early tumors, i.e. highly elevated activities of glucose-6-phosphate dehydrogenase, adenylate cyclase and alkaline phosphatase, a lack of glucose-6-phosphatase and gamma-glutamyltransferase and coexpression of vimentin and desmin, alpha-smooth muscle actin could not be detected in early lesions. In five of 24 advanced tumors inclusions of kidney tubules were found which showed various degrees of alteration in their morphology and enzyme histochemical pattern, but were often directly connected with tubular segments of normal appearance outside the tumor. Like the normal tubules, the enclosed tubular segments were strongly positive for cytokeratin but never expressed vimentin or desmin. Among the 24 tumors studied, two contained cysts which expressed cytokeratin and sometimes also vimentin but not desmin. The enzyme histochemistry of the cells lining the cysts was similar to that of the surrounding tumor mass, except adenylate cyclase was lacking and alkaline phosphatase was not uniformly distributed. In tumors containing cytokeratin-positive cysts, there often were cytokeratin-positive, vimentin-negative and desmin-negative tumor formations in close contact to these cysts. With the exception of cyst formation, the pattern of metastases were identical to that of the primary tumors. All large tumors and the main component of the metastases expressed vimentin, desmin and fibronectin. Mesothelia surrounding metastatic tumor complexes were positive for vimentin, desmin, alpha-smooth muscle actin, fibronectin, cytokeratin and tenascin. It was concluded from these and previous observations on early stages of tumor development that the estrogen-induced hamster kidney tumor originates from mesenchymal interstitial cells (probably pericytes) which may rarely acquire an epithelial phenotype by metaplastic transformation during tumor progression.  相似文献   

8.
Diethylstilbestrol (DES) treatment of a male Syrian hamster resulted in the development of a renal tumor and its widely scattered serosal metastases. Cells in both the primary tumor and metastatic nodules contained secretory granules. The tumors were transplanted serially into DES-supported and non-DES-supported host hamsters until DES-independent tumors developed. Rabbit antiserum to mouse salivary renin and rabbit antiserum to rat kidney resin were reacted with sections of the primary tumor, metastatic nodules, and all transport tumors. The sections were stained by the PAP and Vector-ABC-AP procedures. Renin-positive material was observed in all tumors. Plasma renin activity (PRA) was determined for the host hamsters carrying the renal tumor transplants and compared to the PRA values that had been determined for normal non-DES-treated male and female hamsters. It was found that the average PRA values of host hamsters carrying the tumor transplants were significantly higher than the normal PRA values.  相似文献   

9.
Mitochondrial DNA (mtDNA) encodes for 13 polypeptides critical for normal functioning of the electron transport chain and damage to mtDNA has been associated with aging, and implicated in several disease processes. Although damage to mtDNA is being implicated in mutagenesis and carcinogenesis, there are limited studies demonstrating the role and extent of mtDNA damage in human or rodent cancers. Using serial dilution and competitive polymerase chain reaction analysis, we have quantitated the amount of total mtDNA and analyzed the extent of mtDNA damage in estrogen-induced and estrogen-dependent hamster kidney tumors. The hamster kidney tumor model is a useful and widely investigated rodent model of hormonal carcinogenesis, which shares several characteristics with human breast and uterine cancers, and point to a common mechanistic pathway. Our data indicate a significant decrease in the copy number of total mtDNA and the activity of a nuclear-encoded mitochondrial enzyme citrate synthase in hamster kidney tumors compared to age-matched controls. Since there are several hundred mitochondria in a cell and each mitochondrion has multiple copies of mtDNA, a very small percentage of somatic deletion mutation may not be enough to result in a decreased capacity of the mitochondrial genome. However, a significant increase in deletion mutations or a decrease in the mtDNA copy number can result in a decreased oxidative phosphorylation capacity of the mitochondria and decreased energetics, and thus increased susceptibility to the disease process. Therefore, estrogen-induced hamster kidney tumor model can be a useful rodent model of carcinogenesis to understand the role of mtDNA damage in cancer progression and development.  相似文献   

10.
It has been hypothesized that generation of reactive estrogen–quinone species and oxidative stress, both of which result from the metabolic activation of estrogens, plays an important role in estrogen-induced carcinogenesis. In the present investigation, we used an estrogen-induced hamster renal tumor model to identify gene(s) associated with oxidative stress that may be differentially expressed in estrogen-induced tumors compared with untreated controls. Hamsters were implanted with 17β-estradiol (E2) for 7 months. This treatment resulted in the development of target organ specific kidney tumors. Delta differential PCR technique on RNA isolated from estrogen-induced hamster renal tumors and untreated control kidneys identified a number of cDNA fragments that were differentially expressed in tumor RNA compared with untreated controls. We report the cloning of one of the differentially expressed cDNA fragments, the hamster calbindin-D28k (Cb28k) cDNA, and present a finding that both Cb28k mRNA and protein are suppressed in estrogen-induced hamster renal tumors compared with untreated controls. Cb28k is a Vitamin D3-dependent calcium binding protein that acts as a buffer to maintain intracellular calcium homeostasis, although its exact role is still not clear. Since Cb28k gene has been shown to be associated with providing cells resistance against oxidative stress, Cb28k may be an important biomarker in estrogen-mediated carcinogenesis and oxidative stress.  相似文献   

11.
The cellular origin of estrogen-induced kidney tumors in male Syrian hamsters has been repeatedly the subject of controversy. Several authors have proposed that the tumors arise from proximal tubules, from a combination of tubular and interstitial stromal cells, or solely from interstitial cells. Because of the model character of this tumor for hormone-associated cancer, it was further investigated in this study with respect to morphology, enzyme and intermediate filament pattern, the expression of α-smooth muscle actin and the extracellular matrix proteins fibronectin and tenascin. These analyses were carried out with early and late tumors as well as metastases to determine possible changes in expression of biochemical parameters during the development and progression of this neoplasm. The enzyme histochemical and intermediate filament patterns were usually the same as those described previously for proliferative foci and early tumors, i.e. highly elevated activities of glucose-6-phosphate dehydrogenase, adenylate cyclase and alkaline phosphatase, a lack of glucose-6-phosphatase and γ-glutamyltransferase and coexpression of vimentin and desmin. α-smooth muscle actin could not be detected in early lesions. In five of 24 advanced tumors inclusions of kidney tubules were found which showed various degrees of alteration in their morphology and enzyme histochemical pattern, but were often directly connected with tubular segments of normal appearance outside the tumor. Like the normal tubules, the enclosed tubular segments were strongly positive for cytokeratin but never expressed vimentin or desmin. Among the 24 tumors studied, two contained cysts which expressed cytokeratin and sometimes also vimentin but not desmin. The enzyme histochemistry of the cells lining the cysts was similar to that of the surrounding tumor mass, except adenylate cyclase was lacking and alkaline phosphatase was not uniformly distributed. In tumors containing cytokeratin-positive cysts, there often were cytokeratin-positive, vimentin-negative and desmin-negative tumor formations in close contact to these cysts. With the exception of cyst formation, the pattern of metastases were identical to that of the primary tumors. All large tumors and the main component of the metastases expressed vimentin, desmin and fibronectin. Mesothelia surrounding metastatic tumor complexes were positive for vimentin, desmin, α-smooth muscle actin, fibronectin, cytokeratin and tenascin. It was concluded from these and previous observations on early stages of tumor development that the estrogen-induced hamster kidney tumor originates from mesenchymal interstitial cells (probably pericytes) which may rarely acquire an epithelial phenotype by metaplastic transformation during tumor progression.  相似文献   

12.
Carcinogenicity of catechol estrogens in Syrian hamsters   总被引:30,自引:0,他引:30  
Estradiol and other estrogens induce renal carcinoma in male Syrian hamsters. The mechanism of carcinogenesis still remains unclear. Activation of estrogens to catechol metabolites has in the past been postulated to play a role in estrogen-induced carcinogenesis. Therefore, the carcinogenic activity of catechol estrogens was investigated. After 175 days of treatment, 4-hydroxyestradiol was found to be as carcinogenic as estradiol in male Syrian hamsters (4/5 and 4/5 animals with kidney tumors, respectively). Animals treated with 2-hydroxyestradiol (0/5) or 2-methoxyestradiol (0/6) did not develop renal carcinoma. The catechol estrogens failed to be mutagenic in the Ames test (reversions of his- S. typhimurium to histidine prototrophy in the TA 100 strain). The lack of carcinogenic activity of 2-hydroxyestradiol was not due to a failure to stimulate estrogen-dependent tumor growth. Growth of H-301 cells, an estrogen-dependent hamster kidney tumor cell line, was supported in vivo by estrogens in the following order: estradiol greater than 4-hydroxyestradiol greater than 2-hydroxyestradiol. Stimulation of tumor growth by 2-methoxyestradiol was not detected. It was concluded that the carcinogenic activity of 4-hydroxyestradiol was consistent with a role of catechol metabolites in estrogen-induced carcinogenesis. However, the intrinsic carcinogenic or hormonal activity of 2-hydroxyestradiol probably can not be assessed accurately in vivo because of its rapid methylation and metabolic clearance.  相似文献   

13.
A high percentage of transgenic mice developing from eggs microinjected with plasmids containing the SV40 early region genes and a metallothionein fusion gene develop tumors within the choroid plexus. A line of mice has been established in which nearly every affected animal succumbs to this brain tumor. Thymic hypertrophy and kidney pathology are also observed in some mice. SV40 T-antigen mRNA and protein are readily detected in affected tissues; however, SV40 T-antigen gene expression is barely detectable in unaffected tissues or in susceptible tissues prior to overt pathology, suggesting that tumorigenesis depends upon activation of the SV40 genes. Comparison of DNA from tumor tissue (or cell lines derived from tumors) with DNA from unaffected tissues reveals structural rearrangements as well as changes in DNA methylation of the foreign DNA. The SV40 genes are frequently amplified in tumor tissue, which further indicates that their expression is intimately involved in tumorigenesis in transgenic mice.  相似文献   

14.
Singh KP  Roy D 《Gene》2001,269(1-2):33-43
Analysis of genetic instability in breast cancer tissues compared to uninvolved breast tissues from the same individuals by RAPD (random amplified polymorphic DNA)/AP-PCR (arbitrarily primed PCR) fingerprinting using 30 arbitrary primers revealed 190 amplified DNA fragments. Presumably, each of these represents a gene locus in a different region of the genome of breast cancer tissues. Among these amplified DNA fragments, 65 (34.2%) exhibited presence and absence or reductions and enhancements in the intensity in breast cancer tissues compared to uninvolved breast tissues from the same individuals, and 11 amplified DNA fragments (5.7%) represented polymorphisms in the uninvolved human breast tissues. Reductions and enhancements in the intensity of some of the amplified fragments were observed indicating allelic gains or losses in the breast tumor genome compared to the matched uninvolved tissue genome. The presence or absence of some of the amplified DNA fragments were observed in this study indicating homozygous deletions or insertions in the breast tumor DNA compared to the matched uninvolved tissue DNA. Notably, an insertion of a 1270 bp amplified fragment was observed in 81% (17 of 21) of the tumor samples using the primer, OPC04. This amplified fragment resolved into two, 1200 and 1300 bp, single-stranded amplified fragments on the denaturing sequencing gel. This separation into single-stranded fragments suggests that the amplified fragment contains a conformation that is semistable. The 1270 bp amplified fragment localizes to the q11.2 region of chromosome 17. Sequence analysis of this fragment showed a significant DNA base sequence similarity (93%) with one of the breast tumor-specific human EST. The similarity with EST sequences and RT-PCR analysis showed that a part of this amplified fragment is from the coding region of the genome. Any one of the events observed in this study could play an important role in the development of breast cancer or could occur during the clonal expansion of the genetically unstable breast cells.  相似文献   

15.
Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) uses arbitrary primers and low stringency annealing conditions to amplify anonymous DNA fragments which are then depicted in agarose gels. RAPD-PCR fingerprints have been used for typing and differentiation of bacteria and, increasingly, for the study of genetic relationships between strains and species of microorganisms, plants and animals. The analysis of such fingerprints is based upon the assumption that co-migration of amplicons does not occur and that any given band contains a single amplicon. This report shows that co-migration of fragments of nearly identical size, but different nucleotide sequences, occurs between different isolates and within single RAPD-PCR bands from Aeromonas hydrophila. The possibility of the same phenomenon occurring for other prokaryotic or eukaryotic genomes argues for caution in the interpretation of RAPD-PCR fingerprints.  相似文献   

16.
肿瘤仍然是导致人类死亡的重要原因,由于缺乏深刻了解癌症的发生机制,尽管在过去25年中肿瘤的诊断和治疗都取得很大的进展,但肿瘤病人的存活率并没有显著的提高。目前有很多癌基因和抑癌基因如P16、P53、P73、ras、DCC和RB等  相似文献   

17.
In five kinds of tumors, total 128 specimens were analyzed by RAPD (random amplified polymorphic DNA) PCR with nine 10-base arbitrary primers for detecting instabilities of DNA and chromosome and screening new molecular markers coupled to putative or unknown oncogenes and/or tumor suppressor genes. Bands representing instabilities have been recovered and purified from agarose and cloned into pCAPs vector, and further labeled by DIG as probes for analysis of Southern blot, Northern blot and Sequencing. Results revealed that sample 5 and 3 of the gastric cancers showed the highest genomic changes and the average detectability in five sorts of cancers was up to at least 40% (42.2%-49.4%), and that there were significant differences in the ability of each primer to detect genomic instability, which ranged from 27% to 68%. Despite the highest detectability of genetic instability (68%) in tumor tissues, primer 2 could produce stable profiles of DNA bands in normal tissue genome with good reproducibility. On the contrary, primer 8 was of the lowest one (27%). Band B of single copy found to be allelic losses in gastric and colon cancers according to RFLP analysis was of a novel sequence and registered by Gen-Bank (Accession Number AF151005). Therefore the genetic instabilities often concentrated on some special locuses of chromosome e.g. repetitive sequences etc. and coupled to carcinogenesis. It was impossible or difficult to get great achievements for cancer treatments with the procedure of gene therapy only to one oncogene or one tumor suppressor gene because the extensive DNA variations occurred during the progression of tumor. RAPD assay connected with other techniques was a good tool for the detection of genomic instabilities and direct screening of some new molecular markers related to tumor suppressor genes or oncogenes.  相似文献   

18.
The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a diploid mosquito, Aedes aegypti. RAPD-SSCP analysis revealed segregation of codominant alleles at markers that appeared to segregate as dominant (band presence/band absence) markers or appeared invariant on agarose gels. Our SSCP protocol uses silver staining to detect DNA fractionated on large thin polyacrylamide gels and reveals more polymorphic markers than agarose gel electrophoresis. In B. hebetor, 79 markers were mapped with 12 RAPD primers in six weeks; in A. aegypti, 94 markers were mapped with 10 RAPD primers in five weeks. Forty-five percent of markers segregated as codominant loci in B. hebetor, while 11% segregated as codominant loci in A. aegypti. SSCP analysis of RAPD-PCR markers offers a rapid and inexpensive means of constructing intensive linkage maps of many species.  相似文献   

19.
Estrogen metabolism was evaluated in freshly isolated kidney and liver microsomes and in primary kidney cell cultures from Syrian hamsters, a potential experimental model for examining the possible role(s) of estrogens in tumor initiation and development. Initial velocity studies of the conversion of estradiol to 2-hydroxyestradiol, as determined by the 3H2O release assay with the substrate [2-3H]estradiol, resulted in similar apparent Kms of estrogen 2-hydroxylase of 2.85 and 6.25 microM for liver and renal microsomes, respectively. The apparent Vmax for freshly prepared liver microsomes was 0.13 nmol.mg-1.min-1, while that for renal microsomes was 0.040 nmol.mg-1.min-1. Evaluation of estrogen metabolism was also performed in primary cell cultures of hamster kidney cells, consisting of 75% epithelial cells. [6,7-3H]Estradiol (10 microM) was incubated for 0, 24 and 48 h in primary kidney cell cultures, and the organic soluble metabolites analyzed by reverse-phase HPLC. The cultures from untreated, castrated hamsters metabolize [3H]estradiol to yield small quantities of estrone and significant amounts of polar metabolites, while no catechol estrogens were isolated. Estrogen metabolism by diethylstilbestrol-treated (DES-treated) hamster kidney cell cultures also provided small quantities of estrone and no evidence of catechol estrogens. Additionally, larger amounts of additional polar metabolites were isolated in the cultures from DES-treated hamsters. Finally, levels of estrogen 2-hydroxylase were detected in these cultures using the 3H2O release assay. Thus, the short-term primary kidney cell cultures from the Syrian hamster are capable of metabolizing estrogens. Furthermore, the enzymatic processes appear to be available for the conversion of any catechol estrogens formed into more polar metabolites. These investigations in intact cells, capable of performing all biochemical processes, complement both in vivo and subcellular biochemical studies and may aid in elucidating the roles of estrogens and estrogen metabolism in the initiation and development of estrogen-induced, estrogen-dependent kidney tumors in the Syrian hamster.  相似文献   

20.
The distribution of oncornavirus DNA sequences in various tissues of normal chickens and of chickens with leukemia or kidney tumors induced by avian myeloblastosis virus (AMV) was analyzed by DNA-RNA hybridization using 35S AMV RNA as a probe. All the tissues from normal chickens which were tested contained the same average cellular concentration of endogenous oncornavirus DNA. In contrast, different tissues from lekemic chickens and from chickens bearing kidney tumors contained different concentrations of AMV homologous DNA: in some tissues there was no increase whereas other tissues acquired additional AMV-specific DNA sequences. The increase was the greatest in tissues which can become neoplastic after infection, such as myeloblasts, erythrocytes, and kidney cells. It was directly demonstrated that DNA from AMV-induced kidney tumor contains AMV sequences which are absent in DNA from normal cells. A similar finding had been previously obtained with leukemic cells (15). 3H-labeled 35S RNA from purified AMV was exhaustively hybridized with an excess of normal chicken DNA to remove all the viral RNA sequences which are complementary to DNA from uninfected cells. The 3H-labeled RNA which failed to hybridize was isolated by hydroxylapatite column chromatography which separates DNA-RNA hybrids from single-stranded RNA. The residual RNA hybridized to chicken kidney tumor DNA but did not rehybridize with normal chicken DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号