首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence from rats flown in space suggests that there is a decrease in the ability of the soleus muscle to oxidize long chain fatty acids during space flight. The observation suggests that a shift in the pathways involved in muscle fuel utilization in the absence of load on the muscle has occurred. It is also possible that the reduction is part of a general down-sizing of metabolic capacity since energy needs of inactive muscle are necessarily less. The rodent hind limb suspension model has proved to be a useful ground based model for studying the musculo-skeletal systems changes that occur with space flight. Microarray technology permits the screening of a large number of the enzymes of the relevant pathways thereby permitting a distinction to be made between a shift fuel utilization pattern or a general decrease in metabolic activity. The soleus muscle was isolated from 5 control and 5 hindlimb suspended rats (21 days) and the Affymetrix system for assessing gene expression used to determine the impact of hindlimb unloading on fuel pathways within the muscle of each animal. RESULTS: Suspended rats failed to gain weight at the same rate as the controls (337 +/- 5 g vs 318 +/- 6 g, p < 0.05) and muscle mass from the soleus was reduced (135 +/- 3 mg vs 48 +/- 4 mg, p < 0.05). There was a consistent decrease (p < 0.05) in gene expression of proteins involved in fatty acid oxidation in the suspended group whereas glycolytic activity was increased (p < 0.05). Gene expressions of individual key regulatory enzymes reflected these changes. Carnitine palmitoyltransferase I and II were decreased (p < 0.05) whereas expression of hexokinase, phosphofructokinase and pyruvate kinase were increased (p < 0.05). CONCLUSION: Disuse atrophy is associated with a change in mRNA levels of enzymes involved in fuel metabolism indicative of a shift in substrate utilization away from fat towards glucose.  相似文献   

2.
Mice overexpressing human UCP-3 in skeletal muscle (UCP-3tg) are lean despite overeating, have increased metabolic rate, and their skeletal muscle mitochondria show increased proton conductance. The true function of UCP-3 however, has yet to be determined. It is assumed that UCP-3tg mice have increased fatty acid beta-oxidation to fuel their increased metabolic rate. In this study we have quantified skeletal muscle mRNA levels of a number of genes involved in fatty acid metabolism. mRNA levels of uncoupling protein-2, carnitine palmitoyl transferase-1beta and fatty acid binding proteins, and transporters were unchanged when compared to wild-type mice. Lipoprotein lipase mRNA was slightly, but significantly, increased by 50%. The most notable change in gene expression was a threefold increase in mitochondrial thioesterase (MTE-1) expression. In the face of a chronic increase in mitochondrial uncoupling these changes suggest that increased flux of fatty acids through the beta-oxidation pathway does not necessarily require marked changes in expression of genes involved in fatty acid metabolism. The large increase in MTE-1 both confirms the importance of this gene in situations where mitochondrial beta-oxidation is increased and supports the hypothesis that UCP-3 exports fatty acids generated by MTE-1 in the mitochondrion.  相似文献   

3.
The haemolymph lipid of the southern armyworm moth, Prodenia eridania, is chiefly diglyceride with smaller amounts of triglyceride, monoglyceride, and free fatty acid also present. The stored lipid of moth fat body is almost all triglyceride. Although flight muscle contains a very active monoglyceride lipase, its ability to hydrolyse tri- and diglycerides is very low. The fat body contains enzymes able to hydrolyse tri-, di-, and monoglycerides. These data do not support the suggestion that fat body triglyceride is converted to diglyceride, which is carried in the haemolymph to the flight muscle and then hydrolysed to free fatty acid for oxidation during flight; rather, they indicate that triglyceride can be completely hydrolysed in the fat body, and the resulting free fatty acid is carried to the flight muscle to provide energy for flight.  相似文献   

4.
The influence of exhaustive exercise on the capacity of liver and muscle of rats to oxidize fatty acids was investigated in vitro. The rate of oxidation of fatty acids by liver preparations was significantly elevated as a result of exhaustion. Concurrently, the concentrations of beta-hydroxybutyrate were elevated in the plasma of the exhausted rats, suggesting that oxidation of fatty acids was also elevated in vivo. These findings are analogous to the findings of increased oxidation of fatty acids that results from training. In muscle, oxidation of palmitate, palmitoylcarnitine and beta-hydroxybutyrate by homogenates and isolated mitochondria was depressed with exercise. Despite the decrease in the oxidative capacity of the muscle preparations, the activities of several enzymes of beta-oxidation were either increased or unchanged as a result of exercise, suggesting that the depression in fatty acid oxidation may not be related to alterations in the process of beta-oxidation. Further studies showed that oxidation of [2-(14)C]pyruvate by muscle was depressed, whereas oxidation of [1-(14)C]pyruvate was not changed as a result of exercise. These results suggest that the decrease in fatty acid oxidation may be related to aberrations in the oxidation of acetyl-CoA. The changes in fatty acid oxidation that were observed, which are at variance with what is reported to occur with training, may have resulted from increased fragility of muscle mitochondria as a result of exercise. This increased fragility may render the mitochondria more susceptible to experimental manipulations in vitro and a subsequent loss of normal function.  相似文献   

5.
The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.  相似文献   

6.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

7.
The research of adrenalin influence on the lipid synthesis and split intensity and fat acid oxidation was carried out in two groups of one-month old calves of black-white breed. The animals were injected by adrenalin (1 mg/kg) during 3 days. The specimens of the musculus quadriceps extensor femoris were used for biochemical researches. The increase of the triacylglycerol lipase activity and oxidation intensity of [1-14C] palmitic and [1-14C] stearic acids and the reduction of lipoprotein lipase activity and lipid synthesis from acetic acid intensity were found during researches. So, the reciprocal dependence between lipid synthesis and fatty acid oxidation as well as the connection between processes of lipolysis and fatty acid beta-oxidation, influenced by adrenalin, were observed in the skeletal muscles of the cattle.  相似文献   

8.
The metabolic and genic effects induced by a 20-fold lowering of carnitine content in the heart were studied in mildronate-treated rats. In the perfused heart, the proportion of palmitate taken up then oxidized was 5-10% lower, while the triacylglycerol (TAG) formation was 100% greater than in controls. The treatment was shown to increase the maximal capacity of heart homogenates to oxidize palmitate, the mRNA level of carnitine palmitoyltransferase I (CPT-I) isoforms, the specific activity of CPT-I in subsarcolemmal mitochondria and the total carnitine content of isolated mitochondria. Concomitantly, the increased mRNA expression of lipoprotein lipase, fatty acid translocase and enzymes of TAG synthesis was associated with a 5- and 2-times increase in serum TAG and free fatty acid contents, respectively. The compartmentation of carnitine at its main functional location was expected to allow the increased CPT-I activity to ensure in vivo correct fatty acid oxidation rates. All the inductions related to fatty acid transport, oxidation and esterification most likely stem from the abundance of blood lipids providing cardiomyocytes with more fatty acids.  相似文献   

9.
Escherichia coli grows on long-chain fatty acids after a distinct lag phase. Cells, preadapted to palmitate, grow immediately on fatty acids, indicating that fatty acid oxidation in this bacterium is an inducible system. This hypothesis is supported by the fact that cells grown on palmitate oxidize fatty acids at rates 7 times faster than cells grown on amino acids and 60 times faster than cells grown on a combined medium of glucose and amino acids. The inhibitory effect of glucose may be explained in terms of catabolite repression. The activities of the five key enzymes of beta-oxidation [palmityl-coenzyme A (CoA) synthetase, acyl-CoA dehydrogenase, enoyl-CoA hydrase, beta-hydroxyacyl-CoA dehydrogenase, and thiolase] all vary coordinately over a wide range of activity, indicating that they are all under unit control. The ability of a fatty acid to induce the enzymes of beta-oxidation and support-growth is a function of its chain length. Fatty acids of carbon chain lengths of C(14) and longer induce the enzymes of fatty acid oxidation and readily support growth, whereas decanoate and laurate do not induce the enzymes of fatty acid oxidation and only support limited growth of palmitate-induced cells. Two mutants, D-1 and D-3, which grow on decanoate and laurate were isolated and were found to contain constitutive levels of the beta-oxidation enzymes. Short-chain fatty acids (相似文献   

10.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

11.
Hepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity. However, these enzymes did not affect fasting plasma triglyceride and free fatty acid levels or triglyceride and apolipoprotein B secretion rates. Plasma 3-beta-hydroxybutyrate levels were increased 3-5 days after infection in both HSL- and ATGL-overexpressing male mice, suggesting an increase in beta-oxidation. Expression of genes involved in fatty acid transport and synthesis, lipid storage, and mitochondrial bioenergetics was unchanged. Mechanistic studies in oleate-supplemented McA-RH7777 cells with adenoviral overexpression of HSL or ATGL showed that reduced cellular triglycerides could be attributed to increases in beta-oxidation as well as direct release of free fatty acids into the medium. In summary, hepatic overexpression of HSL or ATGL can promote fatty acid oxidation, stimulate direct release of free fatty acid, and ameliorate hepatic steatosis. This study suggests a direct functional role for both HSL and ATGL in hepatic lipid homeostasis and identifies these enzymes as potential therapeutic targets for ameliorating hepatic steatosis associated with insulin resistance and obesity.  相似文献   

12.
1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids.  相似文献   

13.
14.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

15.
16.
The beta-oxidation of stearic acid and of alpha- and gamma-methyl isoprenoid-derived fatty acids (pristanic and tetramethylheptadecanoic acids, respectively) was investigated in normal skin fibroblasts and in fibroblasts from patients with inherited defects in peroxisomal biogenesis. Stearic acid beta-oxidation by normal fibroblast homogenates was several-fold greater compared to the oxidation of the two branched chain fatty acids. The effect of phosphatidylcholine, alpha-cyclodextrin, and bovine serum albumin on the three activities suggests that different enzymes are involved in the beta-oxidation of straight chain and branched chain fatty acids. Homogenates of fibroblasts from patients with a deficiency in peroxisomes (Zellweger syndrome and infantile Refsum's disease) showed a normal ability to beta-oxidize stearic acid, but the oxidation of pristanic and tetramethylheptadecanoic acid was decreased. Concomitantly, 14CO2 production from the branched chain fatty acids by Zellweger fibroblasts in culture (but not from stearic acid) was greatly diminished. The Zellweger fibroblasts also showed a marked reduction in the amount of water-soluble metabolites from the radiolabeled branched chain fatty acids that are released into the culture medium. The data presented indicate that the oxidation of alpha- and gamma-methyl isoprenoid-derived fatty acids takes place largely in peroxisomes in human skin fibroblasts.  相似文献   

17.
1. Lipoprotein lipase activity was measured in heart homogenates and in heparin-releasable and non-releasable fractions of isolated perfused rat hearts, after the intravenous injection of Triton WR-1339. 2. In homogenates of hearts from starved, rats, lipoprotein lipase activity was significantly inhibited (P less than 0.001) 2h after the injection of Triton. This inhibition was restricted exclusively to the heparin-releasable fraction. Maximum inhibition occurred 30 min after the injection and corresponded to about 60% of the lipoprotein lipase activity that could be released from the heart during 30 s perfusion with heparin. 3. Hearts of Triton-treated starved rats were unable to take up and utilize 14C-labelled chylomicron triacylglycerol fatty acids, even though about 40% of heparin-releasable activity remained in the hearts. 4. It is concluded that Triton selectively inhibits the functional lipoprotein lipase, i.e. the enzyme directly involved in the hydrolysis of circulating plasma triacylglycerols. 5. Lipoprotein lipase activities measured in homogenates of soleus muscle of starved rats and adipose tissue of fed rats were decreased by 25 and 39% respectively after Triton injection. It is concluded that, by analogy with the heart, these Triton-inhibitable activities correspond to the functional lipoprotein lipase.  相似文献   

18.
PURPOSE OF REVIEW: Fish oils rich in n-3 fatty acids reduce serum triglyceride levels. This well known effect has been shown to be caused by decreased very low-density lipoprotein triglyceride secretion rates in kinetic studies in humans. Animal studies have explored the biochemical mechanisms underlying this effect. Triglyceride synthesis could be reduced by n-3 fatty acids in three general ways: reduced substrate (i.e. fatty acids) availability, which could be secondary to increase in beta-oxidation, decreased free fatty acids delivery to the liver, decreased hepatic fatty acids synthesis; increased phospholipid synthesis; or decreased activity of triglyceride-synthesizing enzymes (diacylgylcerol acyltranferase or phosphatidic acid phosphohydrolase). RECENT FINDINGS: Rarely were experimental conditions used in rat studies physiologically relevant to the human situation in which 1.2% energy as n-3 fatty acids lowers serum triglyceride levels. Nevertheless, the most consistent effect of n-3 fatty acids feeding in rats is to decrease lipogenesis. Increased beta-oxidation was frequently, but not consistently, reported with similar numbers of studies reporting increased mitochondrial compared with peroxisomal oxidation. Inhibition of triglyceride-synthesizing enzymes was only occasionally noted. SUMMARY: As the vast majority of studies fed unphysiologically high doses of n-3 fatty acids, these findings in rats must be considered tentative, and the mechanism by which n-3 fatty acids reduce triglyceride levels in humans remains speculative.  相似文献   

19.
Lipoprotein lipase was assayed in extracts of acetone-ether powders of rat skeletal muscles. Enzyme activity in soleus had typical characteristics of lipoprotein lipase in other tissues: inhibition by molar NaCl and protamine sulfate and activation by the human apolipoprotein, R-glutamic acid. Activity in muscles with predominantly red fibers (soleus, diaphragm, lateral head of gastrocnemius and anterior band of semitendinosus) was higher than in those with predominantly white fibers (body of gastrocnemius and posterior band of semitendinosus). No effect of a 24 hour fast upon enzyme activity was observed in ten skeletal muscles, but activity decreased substantially in four adipose tissue depots and increased slightly in heart muscle with fasting. Four minutes after intravenous injection of labeled lymph chylomicrons, skeletal muscles with predominantly red fibers incorporated several times more chylomicron triglyceride fatty acids than thos with predominantly white fibers. Estimated lipoprotein lipase activity in total skeletal muscle was about two-thirds that in total adipose tissue of rats fed ad libitum. After a 24 hour fast, total activity in skeletal muscle was about twice that in adipose tissue. These data suggest that a substantial fraction of lipoprotein lipase is in skeletal muscle of rats and that this tissue, especially its red fibers, is an important site of removal of triglycerides from the blood.  相似文献   

20.
Changes in deposition and the utilization of lipids during one night of migratory activity (nocturnal physical activity) were investigated in dark-eyed Juncos (Junco hyemalis) held in large outdoor aviaries. During vernal migration (May), captive Juncos were sampled at the beginning and conclusion of one night of nocturnal restlessness. Comparisons of variables were drawn with control samples collected from birds in March. Measurements included body weight, fat stored in subcutaneous depots (adiposity), adipose and muscle lipoprotein lipase activity, and fat cell lipolysis. During the migratory period, body weight and adiposity were increased over levels measured in the March birds (p less than 0.01). On the other hand, neither body weight nor adiposity were significantly altered as a result of nocturnal physical activity and no significant changes were observed in adipose lipoprotein lipase activity. Fat cell lipolysis was lower at the beginning than at the end of nocturnal physical activity while, the opposite was observed for muscle lipoprotein lipase activity (p less than 0.05). These results suggest that the amount of work of one night of nocturnal physical activity modifies both muscle lipoprotein lipase activity and fat cell lipolysis in an interrelated fashion. This phenomenon could act to direct a steady supply of fatty acids to the site of energy utilization, i.e., flight muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号