首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human outer dense fiber gene, ODF2, localizes to chromosome 9q34   总被引:6,自引:0,他引:6  
We have isolated the human homolog of the rat Odf2 gene. In rat, Odf2, the 84-kDa major outer dense fiber protein, interacts strongly and specifically with Odf1, the 27-kDa major outer dense fiber protein. The interaction is mediated by leucine zippers during ODF assembly along the sperm axoneme. We compared homology and genomic structure to rat and mouse Odf2 genes. Using fluorescence in situ hybridization, we mapped the human Odf2 gene (ODF2) to chromosome 9q34.  相似文献   

3.
Antisperm antibodies (ASAs) have been implicated in some instances of infertility. To characterize sperm antigens relevant to immunologic and immunocontraceptive development, SPAG2 (sperm-associated antigen 2) was identified by screening a human testis cDNA library with human sera positive for ASAs. Subsequently, two isoforms, SPAG2–1 and SPAG2–2, were identified in testis and placenta libraries, respectively. In the current study, Southern analysis of human genomic DNA with a probe common to the two SPAG2 isoforms indicated a single SPAG2 gene; therefore, alternative splicing is a likely mechanism for production of variant mRNAs. In situ hybridization of human testis sections demonstrated the expression of SPAG2 in primary spermatocytes, with decreased or arrested expression in postmeiotic cells. Immunofluorescence of Triton X-100–extracted spermatozoa with an anti-SPAG2 peptide antiserum indicate that SPAG2 is an intracellular component of the sperm flagellum. Electron microscopy refined this localization to the outer dense fibers (ODFs), structural filaments associated with the mammalian sperm axoneme. The ODFs have been reported to be composed of keratinlike intermediate filament proteins. However, SPAG2 does not exhibit the molecular characteristics of such proteins, nor does SPAG2 demonstrate sequence homology with previously characterized ODF proteins. Therefore, SPAG2 represents a novel protein of human sperm ODFs. Characterization of SPAG2 will further our understanding of ODF function in normal sperm motility and of flagellar abnormalities that lead to male infertility. Mol. Reprod. Dev. 50:284–293, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

5.
6.
7.
The outer dense fibers (ODF) are the main cytoskeletal structures of the sperm tail found in animals with internal fecundation. They consist of at least 14 polypeptides from which only a few are identified due to difficulties in isolation of the protein components. Here we report the isolation and molecular characterization of Odf3, encoding a novel protein of rat sperm ODF. Odf3 is transcribed in testes and more specifically in spermatids but it is also expressed in epididymides and brain suggesting a possible involvement in building of the cellular cytoskeleton. Odf3 encodes a putative protein of approximately 110 kDa. Secondary structure predictions indicated that ODF3 is a coiled-coil protein. The identification of coiled-coil proteins as constituents of outer dense fibers reveals a model for ODF formation.  相似文献   

8.

Background  

Outer dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile.  相似文献   

9.
Outer dense fiber 2 (Odf2) is highly expressed in the testis where it encodes a major component of the outer dense fibers of the sperm flagellum. Furthermore, ODF2 protein has recently been identified as a widespread centrosomal protein. While the expression of Odf2 highlighted a potential role for this gene in male germ cell development and centrosome function, the in vivo function of Odf2 was not known. We have generated Odf2 knockout mice using an Odf2 gene trapped embryonic stem cell (ESC) line. Insertion of a gene trap vector into exon 9 resulted in a gene that encodes a severely truncated protein lacking a large portion of its predicted coil forming domains as well as both leucine zipper motifs that are required for protein-protein interactions with ODF1, another major component of the outer dense fibers. Although wild-type and heterozygous mice were recovered, no mice homozygous for the Odf2 gene trap insertion were recovered in an extended breeding program. Furthermore, no homozygous embryos were found at the blastocyst stage of embryonic development, implying a critical pre-implantation role for Odf2. We show that Odf2 is expressed widely in adults and is also expressed in the blastocyst stage of preimplantation development. These findings are in contrast with early studies reporting Odf2 expression as testis specific and suggest that embryonic Odf2 expression plays a critical role during preimplantation development in mice.  相似文献   

10.
11.
Conditions were established for in vitro culture of seminiferous tubules of adult rat testis. Tubules fragments were able to incorporate radioactive amino acids for up to 6 hours of incubation at 32 degrees C in a modified Eagle's minimum media, indicating biosynthetic activity. Addition of D-glucose (11 Mm) increased the incorporation of either [3H] Leucine or [35S] Methionine four-fold in the protein components of seminiferous tubules. Polyclonal antibodies against outer dense fibers (ODF) polypeptides, which represent approximately 30% of the total sperm proteins, immunoprecipitated 5% of the total radioactivity from cultures carried out either in the presence or absence of D-glucose. Moreover, antibodies specific for the 27-30 kilodalton polypeptides of ODF immunoprecipitated 2% of the total radioactivity, showing no differences in the presence and absence of D-glucose. This study indicates that ODF polypeptides can be synthesized in vitro at 32 degrees C with and without D-glucose.  相似文献   

12.
ODF2 was first identified as the major component of the sperm tail outer dense fibers. Additionally, ODF2 is a critical component of the mature centriole of the animal centrosome where it locates to the distal appendages. Moreover, generation of primary cilia strictly depends on ODF2. The mature centriole is characterized further by recruitment of Cenexin. Albeit highly similar in sequence the relationship between ODF2 and Cenexin has not been investigated. We demonstrate here that ODF2 and Cenexin are alternative splice products by identifying a novel exon 3b encoding Cenexin specific amino acids. Even though ODF2 is the main isoform in testicular tissue RT-PCR analyses revealed that isoforms are not restricted to specific tissues.  相似文献   

13.
The leucine zipper motif has been identified as an important and specific interaction motif used by various sperm tail proteins that localize to the outer dense fibers. We had found that rat Odf1, a major integral ODF protein, utilizes its leucine zipper to associate with Odf2, another major ODF protein, Spag4 which localizes to the interface between ODF and axonemal microtubule doublets, and Spag5. The rat Spag5 sequence indicated a close relationship with human Astrin, a microtubule-binding spindle protein suggesting that Spag5, like Spag4, may associate with the sperm tail axoneme. RT PCR assays indicated expression of Spag5 in various tissues and in somatic cells Spag5 localizes to endoplasmic reticulum and microtubules, as expected for an Astrin orthologue. MT binding was confirmed both in vivo and in in vitro MT-binding assays: somatic cells contain a 58 kDa MT-associated Spag5 protein. Western blotting assays of rat somatic cells and male germ cells at different stages of development using anti-Spag5 antibodies demonstrated that the protein expression pattern changes during spermatogenesis and that sperm tails contain a 58 kDa Spag5 protein. Use of affinity-purified anti-Spag5 antibodies in immuno electron microscopy shows that in rat elongated spermatids and epididymal sperm the Spag5 protein associates with ODF, but not with the axonemal MTs. This observation is in contrast to that for the other Odf1-binding, MT-binding protein Spag4, which is present between ODF and axoneme. Our data demonstrate that Spag5 has different localization in somatic versus male germ cells suggesting the possibility of different function.  相似文献   

14.
We have previously reported that a heterodimeric protein secreted by rat Sertoli cells is antigenically related to a protein associated with outer dense fibers of the sperm tail. Therefore, we have explored the possibility that Sertoli and spermatogenic cells express a similar gene encoding a homologous protein. A Sertoli cell heterodimeric protein cDNA probe recognizes specific mRNA in pachytene and round spermatids fractionated by centrifugal elutriation; however, this specific mRNA was less prominent than in cultured Sertoli cells. In agreement with these observations, in situ hybridization experiments show that Sertoli cells are predominantly engaged in active heterodimeric protein mRNA synthesis, while meiotic prophase spermatocytes and spermatids also show significant but less abundant specific mRNA. Immunoblotting experiments demonstrate that, while Sertoli cells synthesize a heterodimeric protein consisting of two disulfide-linked components with molecular masses of 45 and 35 kD, both primary spermatocytes and round spermatids synthesize single 30 kD monomers not associated by disulfide linkage but recognized by antisera to Sertoli cell heterodimeric protein. Immunoblotting and immunogold electron microscopic studies show that antisera to Sertoli cell heterodimeric protein recognize a protein associated with outer dense fibers. This immunoreactivity was abolished by a 5-min pronase treatment, without affecting the integrity of outer dense fibers. Results of this study and previous studies demonstrate that both Sertoli and spermatogenic cells express a similar gene and that an antigenically related product encoded by this gene becomes associated with outer dense fibers during their assembly at spermiogenesis.  相似文献   

15.
Conventional kinesin I motor molecules are heterotetramers consisting of two kinesin light chains (KLCs) and two kinesin heavy chains. The interaction between the heavy and light chains is mediated by the KLC heptad repeat (HR), a leucine zipper-like motif. Kinesins bind to microtubules and are involved in various cellular functions, including transport and cell division. We recently isolated a novel KLC gene, klc3. klc3 is the only known KLC expressed in post-meiotic male germ cells. A monoclonal anti-KLC3 antibody was developed that, in immunoelectron microscopy, detects KLC3 protein associated with outer dense fibers (ODFs), unique structural components of sperm tails. No significant binding of KLC3 with microtubules was observed with this monoclonal antibody. In vitro experiments showed that KLC3-ODF binding occurred in the absence of kinesin heavy chains or microtubules and required the KLC3 HR. ODF1, a major ODF protein, was identified as the KLC3 binding partner. The ODF1 leucine zipper and the KLC3 HR mediated the interaction. These results identify and characterize a novel interaction between a KLC and a non-microtubule macromolecular structure and suggest that KLC3 could play a microtubule-independent role during formation of sperm tails.  相似文献   

16.
The protein composition of the fibrous sheath (FS) and the outer dense fibers (ODF), two cytoskeletal components of the tail of spermatozoa, was compared by using polyacrylamide gel electrophoresis and immunochemistry applied to Western blots and to spermatozoa. Isolated FS and ODF, the purity of which were verified by electron microscopy (EM), were denatured and either run on sodium dodecyl sulfate-polyacrylamide gels or used to raise antibodies. The gels revealed at least 18 and 14 polypeptide bands for the FS and ODF, respectively. The major bands of the FS had molecular masses of 75, 27.5, and 14.4 kDa, whereas the major bands of the ODF-connecting piece had molecular masses of 32-26, 20, 14.4, 84, and 80 kDa. Several prominent FS and ODF bands were found to comigrate on gels, and the 14.4 kDa polypeptides had similar electrophoretic properties. Anti-FS serum reacted with the majority of Western blot-transferred FS polypeptides, but also cross-reacted strongly with a major 14.4 kDa ODF polypeptide and with less affinity to other major ODF polypeptides. Anti-ODF serum reacted with the majority of ODF polypeptides, but also cross-reacted strongly with a major 14.4 kDa FS polypeptide, and with less affinity to several other FS polypeptides including the 75 kDa band. Antibodies affinity-purified from the 14.4 kDa FS polypeptide only cross-reacted with the 14.4 kDa ODF polypeptide, whereas antibodies purified from the 14.4 kDa ODF polypeptide cross-reacted with 14.4, 27.5, 57, and 63 kDa FS polypeptides. The immunocross-reactions observed on Western blots were confirmed by immunocytochemical methods applied to spermatozoa. This study demonstrates that the FS and ODF, both composed of many polypeptides, several having similar molecular weights, are related cytoskeletal structures as they have epitopes in common, and both contain 14.4 kDa polypeptides with common antigenic and electrophoretic properties.  相似文献   

17.
18.
Previously we reported the cloning of a member of the cysteine-rich secretory protein family, tpx-1, from a testis expression library using an outer dense fiber (ODF)-specific antiserum. Using immunohistochemical and immunoelectron microscopic techniques and Western blotting of purified sperm tail components, we have determined that tpx-1 exists as 25 and 27 kDa proteins in two components of rat spermatid: the ODFs and the acrosome. Tpx-1 mRNA is first expressed in the late pachytene spermatocytes, but the production of these tpx-1 proteins is translationally delayed for 4-5 days before being incorporated into the developing sperm acrosome, surrounding the elongating and condensing spermatid nucleus. Concurrent with sperm head formation, tpx-1 protein was incorporated into the developing sperm tail, and specifically the ODFs. The tpx-1 protein was seen within structures resembling granulated bodies in the cytoplasmic lobe of elongating spermatids and was incorporated subsequently into the growing tail in a manner consistent with ODF development. In addition, tpx-1 protein was localized at the ultrastructural level of the connecting piece of the neck and longitudinal columns of the fibrous sheath, suggesting common protein components in these cytoskeletal structures. As such, tpx-1 may have functional significance in the processes of sperm head development and tail function.  相似文献   

19.
We isolated full-length cDNA clones for human matrilin-2, an oligomeric protein, which forms filamentous networks in the extracellular matrices of various tissues. The human matrilin-2 precursor is encoded by a 4.0-kb mRNA, it consists of 956 amino acids and shows 93% similarity to the mouse protein. Out of the two von Willebrand factor type A-like domains, the 10 epidermal growth factor-type modules, one unique sequence and the oligomerization module, the first A domain is the most conserved. RT-PCR demonstrated wide expression of the gene in human cell lines of fibroblastic or epithelial origin. Alternative splicing affected only 19 amino acids in a 75-moiety-long segment, unique to matrilin-2. Isolation and analysis of the 3' end of the gene revealed that the reason for alternative splicing is alternative 3' splice site selection. Further, we identified in the human matrilin-2 gene a U12 type AT-AC intron between the last two exons encoding the oligomerization domain. We mapped the matrilin-2 gene (MATN2) by fluorescence in situ hybridization at chromosome position 8q22.  相似文献   

20.
Outer dense fibers (ODFs) are located on the outside of the axoneme in the midpiece and principal piece of the mammalian sperm tail and may help to maintain the passive elastic structures and elastic recoil of the sperm tail. We have identified and describe here a human gene that is homologous to the Mst(3)CGP gene family of Drosophila melanogaster and encodes an ODF protein of 241 amino acids. The transcribed region has a size of ?lkb and contains two exons of 416 bp and 406 bp, respectively, not including the 3′ untranslated region. The gene is expressed in testis but not in human spleen, kidney, or brain and resembles in this respect the expression of the Drosophila Mst(3)CGP gene family in the male germline. An antiserum raised against a synthetic peptide derived from the N-terminus of the encoded sequence identified a protein of ? 32 kDa in an extract of human sperm flagella. By Southern-blot analyses and in situ hybridization, the ODF gene was localized to band q22 of chromosome 8. The isolation of a human gene encoding a sperm tail protein may provide the ability to identify and investigate, on the molecular level, possible reasons for human male infertility that are dependent on flagellar disturbances. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号