首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geographic information system-based analysis was used to derive comprehensive, consistent estimates of the potential area of broadly defined, shallow-water, tropical and subtropical coral ecosystems within the territorial sea and exclusive economic zone of the United States. A coral ecosystem is composed of habitats including unconsolidated sediment, mangrove, hermatypic coral, colonized hardbottom, and submerged vegetation, and major structural zones like reef crest, lagoon, and fore reef. This broad definition reflects the importance of both reef and non-reef habitats and structural zones in the function of these ecosystems. Nautical charts, published by the National Oceanic and Atmospheric Administration’s Office of the Coast Survey, provide a consistent source of 10-fathom (∼18 m) and 100-fathom (∼183 m) depth curve information. The 10-fathom or 100-fathom depth curves are used as surrogates for the potential distribution and extent of shallow-water coral ecosystems in tropical and subtropical U.S. waters. An estimated 36,813 sq·km area has been identified where coral ecosystems can potentially be found in waters less than 10 fathoms (18 m) deep. In addition, an estimated 143,059 sq·km area has been identified where coral ecosystems potentially can be found in U.S. waters at depths down to 100 fathoms (183 m). Results also indicate that previous studies underestimated the extent of potential coral ecosystems for some locations in U.S. tropical and subtropical waters by as much as 100% and that the regional distribution of coral ecosystems has been incorrectly reported.  相似文献   

2.
Due to the presence of various potential pollutants industrial wastewaters pose considerable threats to natural waters and make it unfit for the aquatic biota. Analysis of wastewaters by chemical methods is a common practice; however, it does not reflect the toxic effects on living organism. Therefore, bioassessment is necessary for monitoring of wastewater quality. In the present study, the toxic effects of wastewater samples from different industries were evaluated using Euglena gracilis as a biotest organism. Various parameters of the freshwater flagellate E. gracilis like motility, swimming velocity, cell shape, gravitactic orientation (using the automatic biotest ECOTOX) and photosynthetic efficiency (using a pulse amplitude modulated fluorometer) were used as end points for toxicity assessment. In addition, the samples were analysed for some ecologically important physicochemical properties. With some exceptions, most of the physicochemical properties of the tested samples were within the acceptable range of national environmental quality standards for municipal and industrial effluents. However, all the water samples adversely affected different parameters in E. gracilis. This study led to the conclusion that different toxic substances present in wastewater, even at low concentrations, can be a possible threat to aquatic biota. The results of this study prove that ECOTOX is a sensitive, easy, and fast bioassay for monitoring of water and wastewater quality. Gravitactic orientation and cell compactness of E. gracilis were the most sensitive parameters to wastewater toxicity.  相似文献   

3.
Patterns of phytoplankton size spectra variation with gradients of environmental stress have been observed in freshwater, transitional waters and marine ecosystems, driving the development of size spectra based assessment tools.In this study, we have tested on transitional and coastal waters a new Index of Size spectra Sensitivity of Phytoplankton (ISS-Phyto), which integrates simple size spectra metrics, size class sensitivity to anthropogenic disturbance, phytoplankton biomass (chlorophyll a) and taxonomic richness thresholds. ISS-Phyto has been tested both among and within ecosystems along pressure gradients based on expert view assessment; the adequacy of symmetric and both left and right asymmetric models of phytoplankton size class sensitivity have been compared.The results showed that ISS-Phyto consistently discriminated between anthropogenic and natural disturbance conditions. Left asymmetric models of size spectra sensitivity, assuming greater disturbance tolerance with respect to eutrophication and organic enrichment of increasingly large size classes, showed the best fit comparing all ecosystems; in three of the four considered ecosystems (Varna, Helsinki, Mompás-Pasaia), they seemed to discriminate best between different levels of disturbance also within ecosystems. Moreover, they demonstrated significant and inverse patterns of variation along the overall pressure gradient as well as along the inorganic phosphorus (DIP), chlorophyll a and trophic index (TRIX) gradients.Therefore, ISS-Phyto, originally developed for transitional waters, seems to be an adequate assessment tool of ecological status also in coastal marine waters; moreover, it seems adequate to describe within ecosystem disturbance gradients. Hence, ISS-Phyto helps to understand the relationships between anthropogenic impact and ecosystem response from the individual point of view, with reference to the simple parameter of body size.  相似文献   

4.
The taxonomic structure of phytoplankton populations in two Mediterranean coastal lagoons were compared with those of nearby marine waters (external waters). Mediterranean confined lagoons remain isolated for most the year and concentrate phytoplankton to a very high biomass. Coastal lagoons on the Mediterranean may, therefore, act as accumulators of neritic phytoplankton (including species related to harmful algal blooms). We examined whether coastal lagoons act as concentrators of marine toxic dinoflagellates during confinement periods, and the common environmental factors that favour growth of specific harmful species in the two ecosystems considered: coastal lagoons and external waters. An alternation between the dominance of diatoms and dinoflagellates was observed, coinciding with that described in Margalef's mandala, occurring in external waters as well as in coastal lagoons. Moreover, the temporal patter was different in the two ecosystems. Dinoflagellate species composition and their bloom period were highly variable in time and space, thus, species had to be analysed individually. Most of the dinoflagellate species found in this study were potentially harmful and high biomass producers. Harmful dinoflagellate species performed well in both, external waters and lagoons, but the specific species-dependent affinity to each of these environments determined which organisms bloom there. Thus, expansion of harmful algal blooms (HAB) to inland waters is not likely and some environmental factors such as the oxidised state of available nitrogen, became determinant to the success and bloom of a species in the coastal lagoon ecosystem.  相似文献   

5.
Nutrient regeneration is essential to sustained primary production in the aquatic environment because of coupled physical and metabolic gradients. The commonly evaluated ecosystem perspective of nutrient regeneration, as is illustrated among planktonic paradigms of lake ecosystems, functions only at macrotemporal and spatial scales. Most inland waters are small and shallow. Consequently, most organic matter of these waters is derived from photosynthesis of emergent, floating-leaved, and submersed higher plants and microflora associated with living substrata and detritus, including sediments, as well as terrestrial sources. The dominant primary productivity of inland aquatic ecosystems is not planktonic, but rather is associated with surfaces. The high sustained rates of primary production among sessile communities are possible because of the intensive internal recycling of nutrients, including carbon. Steep gradients exist within these attached microbial communities that (a) require rapid, intensive recycling of carbon, phosphorus, nitrogen, and other nutrients between producers, particulate and dissolved detritus, and bacteria and protists: (b) augment internal community recycling and losses with small external inputs of carbon and nutrients from the overlying water or from the supporting substrata; and (c) encourage maximal conservation of nutrients. Examples of microenvironmental recycling of carbon, phosphorus, and oxygen among epiphytic, epipelic, and epilithic communities are explained. Recalcitrant dissolved organic compounds from decomposition can serve both as carbon and energy substrates as well as be selectively inhibitory to microbial metabolism and nutrient recycling. Rapid recycling of nutrient and organic carbon within micro-environments operates at all levels, planktonic as well as attached, and is mandatory for high sustained productivity.  相似文献   

6.
流域水质管理系统构建的理论、方法和实践   总被引:6,自引:0,他引:6  
随着工农业的发展及乡村都市化 ,淡水资源的短缺成为全球性的问题。淡水资源的短缺 ,一方面是对淡水需求量增加 ,供不应求。另一方面是水体水质恶化 ,水资源退化。保护淡水资源是一项持久性的艰巨任务 ,其中水资源管理工具评价预测各种管理措施对水资源的影响 ,是必不可缺少的。工业和生活废水对水体的点源污染问题 ,早在2 0世纪 2 0年代就被意识到 ,并开展了一些水资源的保护和管理研究工作。自 192 5第一个水质数学模型Streeter Phelps[1] 用于模拟水环境中BOD和DO的动态变化研究以来 ,出现了许多水质模型并用于河流、…  相似文献   

7.
Data collected over a ten year period have been used to review some characteristics of freshwater and coastal ecosystems in Ghana. Studies were conducted on two recently formed man-made lakes, one river, five coastal lagoons and waters along the ocean front.Freshwaters had near neutral pH while coastal waters were alkaline. In both ecosystems the pH of sediments were lower than those of corresponding waters. While the transparency of coastal waters varied within narrow limits, large variations were observed in freshwaters. The lowest concentration of nutrients occurred in the river and the highest in coastal waters.In general, differences in these physical and chemical characteristics do not depend on whether the aquatic systems were fresh, brackish or saline. They seem to be more influenced by such factors as whether a water body: (1) was lotic or lentic, (2) was influenced by industrial or domestic activities, (3) was affected by impoundment, (4) received turbid water inflows, or (5) was eutrophic.  相似文献   

8.
Due to global climate change–induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species’ distributions. This is particularly important in connectivity-limited ecosystems, such as freshwater ecosystems, where increased human translocation is creating species associations over previously unseen environmental gradients. Here, we use a large-scale presence–absence dataset of freshwater fish from lakes across the Fennoscandian region in a Joint Species Distribution Model, to measure the effect of temperature on species associations. We identified a trend of negative associations between species tolerant of cold waters and those tolerant of warmer waters, as well as positive associations between several more warm-tolerant species, with these associations often shifting depending on local temperatures. Our results confirm that freshwater ecosystems can expect to see a large-scale shift towards communities dominated by more warm-tolerant species. While there remains much work to be done to predict exactly where and when local extinctions may take place, the model implemented provides a starting-point for the exploration of climate-driven community trends. This approach is especially informative in regards to determining which species associations are most central in shaping future community composition, and which areas are most vulnerable to local extinctions.  相似文献   

9.
Twenty-five introduced fish species are established in Spanish fresh waters. Most of the introductions took place after 1900, with a significant exponential increase during the second half of the 20th century (15 species introduced from 1949). Major stocking efforts in Spanish waters have been suspended, but recently some species have been released by anglers or are suspected to be escapes from fish farms. Stream regulation is considered to be one of the main negative factors affecting river ecosystems in Spain, but many of the aliens adapt well to these altered habitats. Competition between native and exotic fishes is certain to occur to some degree, but there is little quantitative information. Fish conservation and fishery management must not be based on the 'introduce anything' sentiment that has developed over more than a century. Information, education and public awareness are critical components of any effort to prevent the spread of introduced fish species.  相似文献   

10.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

11.
Aquatic macroaggregates (flocs ≥0.5 mm) provide an important mechanism for vertical flux of nutrients and organic matter in aquatic ecosystems, yet their role in the transport and fate of zoonotic pathogens is largely unknown. Terrestrial pathogens that enter coastal waters through contaminated freshwater runoff may be especially prone to flocculation due to fluid dynamics and electrochemical changes that occur where fresh and marine waters mix. In this study, laboratory experiments were conducted to evaluate whether zoonotic pathogens (Cryptosporidium, Giardia, Salmonella) and a virus surrogate (PP7) are associated with aquatic macroaggregates and whether pathogen aggregation is enhanced in saline waters. Targeted microorganisms showed increased association with macroaggregates in estuarine and marine waters, as compared with an ultrapure water control and natural freshwater. Enrichment factor estimations demonstrated that pathogens are 2–4 orders of magnitude more concentrated in aggregates than in the estuarine and marine water surrounding the aggregates. Pathogen incorporation into aquatic macroaggregates may influence their transmission to susceptible hosts through settling and subsequent accumulation in zones where aggregation is greatest, as well as via enhanced uptake by invertebrates that serve as prey for marine animals or as seafood for humans.  相似文献   

12.
Ye Y  Pang B P  Chen G C  Chen Y 《农业工程》2011,31(3):169-173
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

13.
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

14.
《Ecological Indicators》2008,8(5):515-529
In order to decide on measures to preserve and restore seagrasses and macroalgae, there is a need for identifying quantitative links between eutrophication pressure and vegetation response. This study compiles existing empirical relationships between eutrophication-related variables and responses measured in terms of distribution and abundance of seagrasses and macroalgae and analyses similarities and differences between responses in different ecosystems. The compilation includes 73 relationships originating from 38 publications from the period 1982 to 2007 and covering a wide range of ecosystems. Of the 73 relationships, 38 link vegetation responses significantly to eutrophication pressure as expressed by nutrient richness or water transparency, 18 link the responses to combinations of eutrophication pressure and ecosystem characteristics and 9 link the responses to ecosystem characteristics alone. The remaining relationships are either non-significant (3) or include no information on significance levels (5). The compilation demonstrates that seagrasses and macroalgae generally respond quantitatively to changes in eutrophication pressure by growing deeper, being more abundant and more widely distributed in clear waters with low nutrient concentration as compared to more turbid and nutrient-rich ecosystems. Vegetation in deeper waters shows the strongest response because it is most markedly affected by shading effects of eutrophication. This similarity in the patterns of response indicates a wide robustness and generality of the findings. However, the sensitivity of the vegetation to shading effects of eutrophication varies widely across ecosystems. We attribute this variability to additional eutrophication effects such as anoxic events, and ecosystem characteristics such as water residence time, sediment characteristics, or presence of grazers that may modify the response of the vegetation to a given eutrophication pressure. We encourage taking into account and quantifying such effects in order to improve the predictive power of future empirical relationships.  相似文献   

15.
Small algae are the trophic basis in both marine and freshwater ecosystems. The identification of tiny microorganisms and place of their origin is laborious but necessary. This paper consists of a literature review of 17 species of planktonic algae, with a discussion of taxonomic problems. We also clarify whether these 17 species are non-native, invasive or cryptogenic species, with an indication whether they had been recognised as ‘alien’ in Europe. According to our observations, areas colonized by small and alien algal species, were anthropogenically altered. There were: systems with heated waters (‘heated islands’), which imitated tropical conditions; highly eutrophic to hypereutrophic water ecosystems, easily colonized by alien species, fishponds with intense fish cultivation, where alien species of fish are/had been introduced, which carried also other alien organisms; and inland water ecosystems with high salinity or high conductivity e.g. pits inundated by mine waters, imitating sea or brackish conditions acting as hubs of migration of alien species adapted to brackish or saline waters. We have prepared a map showing areas inhabited by alien species, both of documented places and hypothetical ones, where we would expect alien species to occur.  相似文献   

16.
Sand sediments are widely distributed in the shelf zone of the World Ocean. The main physical and ecological peculiarity of marine sands is the mobility of pore waters and their mixing with the near-bottom waters of the sea. The mixing is closely related to turbulent processes in the water column; the most important of these processes is wave mixing. This causes filtration of seawater through the sand, ensuring therefore, perhaps, the most large-scale filtration process on the Earth. Advective mixing redistributes dissolved oxygen and nutrients between the pore waters of the sand and the bulk of the seawater column and determines redox conditions in the sediment column, which usually are either oxidative or suboxic; the metals with variable valence, mostly iron, serve as a redox buffer. The regeneration of nutrients and nitrification of ammonia also take place in the sand column. The instability of advective mixing is considered as the major difficulty for qualitative assessment of energetic metabolism and regeneration of nutrients in sands as well as for revealing the ecological role of marine sands in coastal ecosystems.  相似文献   

17.
Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems.  相似文献   

18.
Mangrove ecosystems rely on seawater, rain-derived flow, and groundwater for hydrologic sustenance, flushing, and inflow of nutrients and sediments. The relative contribution of these source waters and their variability through time and space can provide key information concerning the hydrologic function of ecosystems. We used hydrologic tracers to partition source waters and trace their movements in the Enipoas stream, a river-dominated mangrove ecosystem on the island of Pohnpei, Federated States of Micronesia (FSM) and in the Yela watershed, an interior mangrove ecosystem on the island of Kosrae, FSM. The Enipoas site was characterized as a salt wedge estuary whose source water contributions alternated between predominantly seawater and rain-derived flow, depending on the tide. The source waters in the interior Yela site were also predominantly seawater and rain-derived flow, however the relative contribution of each was much more stable. The mean groundwatercontribution was 5% (SD 5 5.5) for the Enipoas site and 20% (SD 5 11.0) for the Yela site. Although a small contributor to flow, groundwater was a steady source of freshwater for both systems. Hydrologic linkages between mangroves and adjacent ecosystems were demonstrated by the temporal and spatial distribution of source waters.The 0.8 km Enipoas estuary, with its highly dynamic bi-directional flows, transported source waters along a hydrologic continuum comprised of coral reef, mangroves, and palm forest. In the interior mangroves of the Yela watershed, the presence of rain-derived flow and groundwater demonstrated a hydraulic connection between the mangroves and an upstream freshwater swamp. Interior mangroves with such linkages avoid stresses such as desiccation and heightened salinity, and thus are more productive than those with little or no freshwater flows.  相似文献   

19.
To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan''s marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans.  相似文献   

20.
Global climate change is driving rapid distribution shifts in marine ecosystems; these are well established for lower trophic levels, but are harder to quantify for migratory top predators. By analysing a 25-year sightings-based dataset, we found evidence for rapid northwards range expansion of the critically endangered Balearic shearwater Puffinus mauretanicus in northeast Atlantic waters. A 0.6 degrees C sea surface temperature increase in the mid-1990s is interpreted as an underlying controlling factor, while simultaneous northward shifts of plankton and prey fish species suggests a strong bottom-up control. Our results have important conservation implications and provide new evidence for climate-driven regime shift in Atlantic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号