首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The role of altered cross-bridge kinetics during the transition from cardiac hypertrophy to failure is poorly defined. We examined this in Dahl salt-sensitive (DS) rats, which develop hypertrophy and failure when fed a high-salt diet (HS). DS rats fed a low-salt diet were controls. Serial echocardiography disclosed compensated hypertrophy at 6 wk of HS, followed by progressive dilatation and impaired function. Mechanical properties of skinned left ventricular papillary muscle strips were analyzed at 6 wk of HS and then during failure (12 wk HS) by applying small amplitude (0.125%) length perturbations over a range of calcium concentrations. No differences in isometric tension-calcium relations or cross-bridge cycling kinetics or mechanical function were found at 6 wk. In contrast, 12 wk HS strips exhibited increased calcium sensitivity of isometric tension, decreased frequency of minimal dynamic stiffness, and a decreased range of frequencies over which cross bridges produce work and power. Thus the transition from hypertrophy to heart failure in DS rats is characterized by major changes in cross-bridge cycling kinetics and mechanical performance.  相似文献   

2.
3.
4.
This study was designed to investigate the expression of short‐chain acyl‐CoA dehydrogenase (SCAD), a key enzyme of fatty acid β‐oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time‐dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hypertensive rats (SHR). On the other hand, swim‐trained rats developed physiological cardiac hypertrophy, whereas SHR developed pathological cardiac hypertrophy. The two kinds of cardiac hypertrophy exhibited divergent SCAD changes in myocardial fatty acids utilization. In addition, the expression of SCAD was significantly decreased in pathological cardiomyocyte hypertrophy, however, increased in physiological cardiomyocyte hypertrophy. SCAD siRNA treatment triggered the pathological cardiomyocyte hypertrophy, which showed that the down‐regulation of SCAD expression may play an important role in pathological cardiac hypertrophy. The changes in peroxisome proliferator‐activated receptor α (PPARα) was accordant with that of SCAD. Moreover, the specific PPARα ligand fenofibrate treatment increased the expression of SCAD and inhibited pathological cardiac hypertrophy. Therefore, we speculate that the down‐regulated expression of SCAD in pathological cardiac hypertrophy may be responsible for ‘the recapitulation of foetal energy metabolism’. The deactivation of PPARα may result in the decrease in SCAD expression in pathological cardiac hypertrophy. Changes in SCAD are different in pathological and physiological cardiac hypertrophy, which may be used as the molecular markers of pathological and physiological cardiac hypertrophy.  相似文献   

5.
Ni L  Zhou C  Duan Q  Lv J  Fu X  Xia Y  Wang DW 《PloS one》2011,6(11):e27294
BACKGROUND: Long-term β-adrenergic receptor (β-AR) blockade reduces mortality in patients with heart failure. Chronic sympathetic hyperactivity in heart failure causes sustained β-AR activation, and this can deplete Ca(2+) in endoplasmic reticulum (ER) leading to ER stress and subsequent apoptosis. We tested the effect of β-AR blockers on ER stress pathway in experimental model of heart failure. METHODS AND DISCUSSIONS: ER chaperones were markedly increased in failing hearts of patients with end-stage heart failure. In Sprague-Dawley rats, cardiac hypertrophy and heart failure was induced by abdominal aortic constriction or isoproterenol subcutaneous injection. Oral β-AR blockers treatment was performed in therapy groups. Cardiac remodeling and left ventricular function were analyzed in rats failing hearts. After 4 or 8 weeks of banding, rats developed cardiac hypertrophy and failure. Cardiac expression of ER chaperones was significantly increased. Similar to the findings above, sustained isoproterenol infusion for 2 weeks induced cardiac hypertrophy and failure with increased ER chaperones and apoptosis in hearts. β-AR blockers treatment markedly attenuated these pathological changes and reduced ER stress and apoptosis in failing hearts. On the other hand, β-AR agonist isoproterenol induced ER stress and apoptosis in cultured cardiomyocytes. β-AR blockers largely prevented ER stress and protected myocytes against apoptosis. And β-AR blockade significantly suppressed the overactivation of CaMKII in isoproterenol-stimulated cardiomyocytes and failing hearts in rats. CONCLUSIONS: Our results demonstrated that ER stress occurred in failing hearts and this could be reversed by β-AR blockade. Alleviation of ER stress may be an important mechanism underlying the therapeutic effect of β-AR blockers on heart failure.  相似文献   

6.
End-stage hypertensive heart disease is an increasing cause of cardiac mortality. Therefore, the current study focused on the cardiac remodelling from hypertrophy to fibrosis in old-aged spontaneously hypertensive rats (SHRs), and explored the therapeutic effects of Rosuvastatin and its possible mechanism(s) of action. Spontaneously hypertensive rats at age 52 weeks were randomly divided into three groups, the first two to receive Rosuvastatin at a dose of 20 mg/kg/day and 40 mg/kg/day, respectively, and the third to receive placebo, which was to be compared with Wistar-Kyoto as controls. After 2-month treatment, SBP, heart to body weight ratio (HW/BW%) and echocardiographic features were evaluated, followed by haematoxylin and eosin and Masson trichrome staining in conjunction with qPCR of foetal gene expressions. Transferase-mediated dUTP nick-end labelling assay and immunofluorescent labelling for active caspase-3 were used to detect the apoptotic cardiomyocytes. Signaling pathways involved were examined by using western blot. Old-aged SHR developed end-stage hypertensive heart disease characterized by significant enhancement of HW/BW%, LVAWd and LVPWd, and decreased LVEF and LVFS, accompanied by cardiomyocytes enlargement and fibrosis along with activation of foetal gene programme. Cardiac apoptosis increased significantly during the transition process. Rosuvastatin reduced hypertrophy significantly via AT(1) Receptor-PKCβ2/α-ERK-c-fos pathway; protected myocardium against apoptosis via Akt-FOXO1, Bcl-2 family and survivin pathways and consequently suppressed the caspase-3 activity. The present study revealed that old-aged SHRs developed cardiac remodelling from hypertrophy to fibrosis via cardiac apoptosis during the end stage of hypertensive heart disease. These pathological changes might be the consequence of activation of AT(1) Receptor-PKCβ2/α-ERK-c-fos and AKT-FOXO1/Bcl-2/survivin/Caspase3 signaling. Rosuvastatin effectively attenuated the structural changes by reversing the signaling transductions involved.  相似文献   

7.
The Mas protooncogene encodes a G protein-coupled receptor that has been described as a functional receptor for the cardioprotective fragment of the renin-angiotensin system (RAS), Angiotensin (Ang)-(1-7). The aim of this current study was to evaluate the responsiveness of Mas expression in hearts during different physiological and pathological conditions in rats. Physical training was considered a physiological condition, while isoproterenol-induced hypertrophy, myocardial infarction and DOCA-salt model of hypertension were used as pathological models of heart injury. The expression of Mas was analyzed by western blotting. Although swim-trained rats presented significant cardiac hypertrophy, our physical training protocol was unable to induce changes in the expression of Mas. On the other hand, cardiac hypertrophy and damage elicited by isoproterenol treatment led to a reduction in Mas expression. Myocardial infarction also significantly decreased the expression of Mas after 21 days of myocardial ischemia. Additionally, Mas expression levels were increased in hearts of DOCA-salt rats. Our present data indicate that Mas expression is responsive to different pathological stimuli, thereby suggesting that Mas receptor is involved in the homeostasis of the heart, as well as in the establishment and progression of cardiac diseases.  相似文献   

8.
Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure.  相似文献   

9.
Tropisetron exerts a protective effect against cardiac complications, particularly cardiac hypertrophy. Oxidative stress and apoptosis are the main contributors to the pathogenesis of cardiac hypertrophy. Sirtuins, a family of histone deacetylases, are connected to cellular oxidative stress signaling and antioxidant defense. Sirtuins are also linked to apoptosis which is an important mechanism in the progression of cardiac hypertrophy to heart failure. Literature also suggests that tropisetron impedes apoptosis, partly mediated through an antioxidant mechanism. Therefore, we examined if tropisetron fights cardiac hypertrophy by adjusting sirtuin family proteins (Sirts) and components of mitochondrial death pathway, Bcl-associated X (BAX), Bcl-2-associated death promoter (BAD). Male Sprague–Dawley rats got divided into four groups, including control (Ctl), tropisetron (Trop), cardiac hypertrophy (Hyp), and hypertrophic rats under tropisetron treatment (Hyp + Trop). Pathological cardiac hypertrophy was induced by surgical abdominal aortic constriction (AAC). The increased expression of brain natriuretic peptide (BNP) in the Hyp group confirms the cardiac hypertrophy establishment. The mRNA levels of SIRT1, SIRT3, SIRT7, and BAD also upregulated in the hypertrophic group (p < 0.001). Postoperational administration of tropisetron for 3 weeks lowered the increased expression of BNP (p < 0.05) and BAD (p < 0.001), though the reduction of BAX expression was statistically insignificant (p > 0.05). Tropisetron treatment also restored the normal level of SIRT1/3/7 genes expression in the Hyp + Trop group (p < 0.05). Present findings suggest that tropisetron can suppress cardiomyocyte hypertrophy progression to heart failure by counteracting BNP, SIRT1, SIRT3, Sirt7, and BAD overexpression-mediated apoptosis in a rat model of cardiac hypertrophy.  相似文献   

10.
Bcl-2 family members and apoptosis, taken to heart   总被引:13,自引:0,他引:13  
Loss of myocardial cells via apoptosis has been observed in many cardiovascular diseases and has been shown to contribute to the initiation and progression of heart failure. The Bcl-2 family members are important regulators of the mitochondrial pathway of apoptosis. These proteins decide whether the mitochondria should initiate the cell death program and release proapoptotic factors such as cytochrome c. The Bcl-2 proteins consist of anti- and proapoptotic members and play a key role in regulating apoptosis in the myocardium. The antiapoptotic proteins have been demonstrated to protect against various cardiac pathologies, whereas the antiapoptotic proteins have been reported to contribute to heart disease. This review summarizes the current understanding of the role of Bcl-2 proteins in the heart. cardiovascular disease; cytochrome c; protein; mitochondria  相似文献   

11.
Pathological cardiac hypertrophy is the response of heart to various biomechanical and physiopathological stimuli, such as aging, myocardial ischemia and hypertension. However, a long-term exposure to the stress makes heart progress to heart failure. Autophagy is a dynamic self-degradative process necessary for the maintenance of cellular homeostasis. Accumulating evidence has revealed a tight link between cardiomyocyte autophagy and cardiac hypertrophy. Sophisticatedly regulated autophagy protects heart from various physiological and pathological stimuli by degradating and recycling of protein aggregates, lipid drops, or organelles. Here we review the recent progresses concerning the functions of autophagy in cardiac hypertrophy induced by various hypertrophic stimuli. Moreover, the therapeutic strategies targeting autophagy for cardiac hypertrophy will also be discussed.  相似文献   

12.
Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats (P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended (P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction (P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.  相似文献   

13.
14.
Cardiac hypertrophy is a key risk factor for chronic heart failure. Current treatments predominantly focus on both reducing the peripheral vascular resistance and activating nerve-humoral system. However, these efforts can't reverse cardiac hypertrophy fundamentally. Ras association domain family 1 isoform A (RASSF1A) is a regulatory tumor suppressor whose inactivation by inappropriate promoter methylation has been implicated in the development of many human cancers. Recently, there have been a number of studies investigating the roles of RASSF1A in the pathophysiology of cardiac hypertrophy. In this review, we focus on the present progresses of cardiac RASSF1A under physiological and pathological conditions, trying to systematically elucidate how the RASSF1A-mediated signal pathways contribute to the maintenance of normal cardiac myocyte structure and function and lead to the regression of pathological cardiac hypertrophy. These pathways exert multiple functions such as regulating cardiac contractility, physiologically increasing stability of microtubule, preventing cardiac dysfunction, attenuating interstitial fibrosis and mediating cell apoptosis. These specific roles are highly relevant with cardiac hemodynamics and therapeutic strategies, indicating RASSF1A may have the potential to reverse pathological cardiac hypertrophy thus prevent heart failure fundamentally.  相似文献   

15.
Hearts from severely Cu-deficient rats show a variety of pathological defects, including hypertrophy and, in intact hearts, depression of contractile function. Paradoxically, isolated cardiomyocytes from these rats exhibit enhanced contractile properties. Because hypertrophy and enhanced contractility observed with other pathologies are associated with elevation of insulin-like growth factor-I (IGF)-I, this mechanism was examined for the case of dietary Cu deficiency. Male, weanling Sprague-Dawley rats were provided diets that were deficient (approximately 0.5 mg Cu/kg diet) or adequate (approximately 6 mg Cu/kg diet) in Cu for 5 wk. IGF-I was measured in serum and hearts by an ELISA method, cardiac IGF-I and IGF-II receptors and IGFBP-3 were measured by Western blotting analysis, and mRNAs for cardiac IGF-I and IGF-II were measured by RT-PCR. Contractility of isolated cardiomyocytes was assessed by a video-based edge-detection system. Cu deficiency depressed serum and heart IGF-I and heart IGFBP-3 protein levels and increased cardiac IGF-I receptor protein. Cardiac IGF-II protein and mRNA for cardiac IGF-I and IGF-II were unaffected by Cu deficiency. A Cu deficiency-induced increase in cardiomyocyte contractility, as indicated by increases in maximal velocities of shortening (-dL/dt) and relengthening (+dL/dt) and decrease in time to peak shortening (TPS), was confirmed. These changes were largely inhibited by use of H-1356, an IGF-I receptor blocker. We conclude that enhanced sensitivity to IGF-I, as indicated by an increase in IGF-I receptor protein, accounts for the increased contractility of Cu-deficient cardiomyocytes and may presage cardiac failure.  相似文献   

16.
Molecular regulation of cardiac hypertrophy   总被引:1,自引:0,他引:1  
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.  相似文献   

17.
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.  相似文献   

18.
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control (n=6); trained (n=6); control+losartan (10 mg.kg(-1).day(-1), n=6); trained+losartan (n=6); control+high-salt diet (1%, n=6); and trained+high-salt diet (1%, n=6). High salt was used to inhibit the systemic RAS and losartan to block the AT1 receptor. The exercise protocol consisted of: 4x12 bouts, 5x/wk during 8 wk, with 65-75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained+high-salt diet groups (8.5% and 10.6%, P<0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and alphaMHC (alpha-myosin heavy chain)-to-betaMHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT2 receptor levels, whereas the AT1 receptor gene (56%, P<0.05) and protein (31%, P<0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27+/-2.4 vs. 22.01+/-0.8 pg/mg, P>0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT1 receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.  相似文献   

19.
Hyperthyroidism can lead to the activation of proteins which are associated with inflammation, apoptosis, hypertrophy, and heart failure. This study aimed to explore the inflammatory and apoptotic proteins involved in the hyperthyroidism-induced cardiac hypertrophy establishment. Male Wistar rats were divided into control and hyperthyroid (12 mg/L L-thyroxine, in drinking water for 28 days) groups. The expression of inflammatory and apoptotic signaling proteins was quantified in the left ventricle by Western blot. Hyperthyroidism was confirmed by evaluation of T3 and T4 levels, as well as cardiac hypertrophy development. There was no change in the expression of HSP70, HIF1-α, TNF-α, MyD88, p-NFκB, NFκB, p-p38, and p38. Reduced expression of p53 and PGC1-α was associated with increased TLR4 and decreased IL-10 expression. Decreased Bcl-2 expression and increased Bax/Bcl-2 ratio were also observed. The results suggest that reduced PGC1-α and IL-10, and elevated TLR4 proteins expression could be involved with the diminished mitochondrial biogenesis and anti-inflammatory response, as well as cell death signaling, in the establishment of hyperthyroidism-induced maladaptive cardiac hypertrophy.  相似文献   

20.
Pathological cardiac hypertrophy is a process of abnormal remodeling of cardiomyocytes in response to pressure overload or other stress stimuli, resulting in myocardial injury, which is a major risk factor for heart failure, leading to increased morbidity and mortality. General control nonrepressed protein 5 (GCN5)/lysine acetyltransferase 2 A, a member of the histone acetyltransferase and lysine acetyltransferase families, regulates a variety of physiological and pathological events. However, the function of GCN5 in pathological cardiac hypertrophy remains unclear. This study aimed to explore the role of GCN5 in the development of pathological cardiac hypertrophy. GCN5 expression was increased in isolated neonatal rat cardiomyocytes (NRCMs) and mouse hearts of a hypertrophic mouse model. GCN5 overexpression aggravated the cardiac hypertrophy triggered by transverse aortic constriction surgery. In contrast, inhibition of GCN5 impairs the development of pathological cardiac hypertrophy. Similar results were obtained upon stimulation of NRCMs (having GCN5 overexpressed or knocked down) with phenylephrine. Mechanistically, our results indicate that GCN5 exacerbates cardiac hypertrophy via excessive activation of the transforming growth factor β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Using a TAK1-specific inhibitor in rescue experiments confirmed that the activation of TAK1 is essential for GCN5-mediated cardiac hypertrophy. In summary, the current study elucidated the role of GCN5 in promotion of cardiac hypertrophy, thereby implying it to be a potential target for treatment.Subject terms: Heart failure, Cell signalling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号