首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a twenty-two months old male patient with hypotonia, mental and motor retardation and trigonocephaly. Standard GTG banding chromosomal analysis (from metaphyses of a periferal blood lymphocyte culture) showed 46,XY, der(9) monosomy 9pter-->p22, trisomy 10q26--> qter karyotype. This unbalanced translocation resulted from the father's t(9,10) (p22;p26) karyotype. Deletions of the terminal part of 9p and partial trisomy of chromosome 10q are rare chromosomal disorders. To our knowledge, this is the first case report in the literature of a deletion of 9pter-->p22.3 and a duplication of 10q26-->qter. We assume that the clinical anomalies are due to der(9) monosomy 9pter-->p22, trisomy 10q-->26qter.  相似文献   

2.
We report a neonate with pure deletion of distal 11q (11q23.3-->qter) and Jacobsen syndrome. The patient had growth restriction, petechiae, thrombocytopenia, dilation of renal pelvis, congenital heart defects, and seizures. Array comparative genomic hybridization revealed a 15.8-Mb deletion from 11q23.3 to 11q25 without genomic imbalances in other chromosomes. Cytogenetic analysis revealed a karyotype of 46,XX,der(7)(7pter-->7q32),der(11)(11pter--> 11q23.3::7q32-->7qter). The parental karyotypes were normal. This is the first report of pure distal 11q deletion without additional genomic imbalances in a patient with Jacobsen syndrome and a de novo unbalanced reciprocal translocation.  相似文献   

3.
崔英霞  王咏梅  姚兵  黄宇烽 《遗传》2004,26(5):612-614
一例新生复杂染色体重排的女性携带者(complex chromosome rearrangement ,CCR),易位涉及1号、5号和12号染色体。病人因2次自然流产而要求进行外周血淋巴细胞G显带核型分析。最初G显带核型疑为46,XX,t(1;5;12)(1pter→1q25::12q24→12qter;5qter→5p11::1q25→1qter;12pter→12q24::5p11→5pter).经荧光原位杂交(FISH)技术检测,证实患者的核型为46,XX,t(1;5;12)(1pter→1q23::12q22→12qter;5qter→5p11::1q25→1qter;12pter→12q22::1q23→1q25::5p11→5pter).7年后病人再次妊娠,并拒绝产前诊断。女婴足月分娩,生长发育正常。核型为46,XX。比较以前报告的女性复杂易位携带者与我们报告的病例可以认为,CCR并不总是表现为自然流产或分娩畸形儿,仍有机会生出正常的孩子。Abstract: We reported in the paper one case of a de novo complex chromosomal rearrangement (CCR) involving three different chromosomes,1, 5 and 12. Two pregnancies of the female carrier over three years resulted in two spontaneous abortions. Initial cytogenetic analysis of her peripheral lymphocyte by G banding suspected a karyotype 46,XX,t(1;5;12)(1pter →1q25::12q24→12qter;5qter→ 5p11::1q25→1qter;12pter →12q24::5p11→5pter). Fluorescense in -situ hybridization (FISH) was used to confirm the karyotype 46,XX,t(1;5;12)(1pter→1q23::12q22→12qter;5qter→5p11::1q25→1qter;12pter→12q22::1q23→1q25::5p11→5pter). Seven years later she was pregnant again and refused to have prenatal diagnosis. The fetus is normal both in phenotype and karyotype。Comparing previously reported female CCR carriers with the case, we conclude that female CCR carriers may not always present spontaneous abortion or have offspring with congenital malformation and can have chance to get a healthy child.  相似文献   

4.
We report, a newborn presenting multiple congenital abnormalities with karyotype; 47,XY,der(7)t(6;7)(pter-p23::p15-->qter),+der(9)t(7;9)(pter-->p15::q21.2--> pter)t(6;7;9)(p23;p15;q21.2)mat[20]. The mother and her phenotypically normal daughter were carriers of a complex chromosomal rearrangement with karyotypes; 46,XX,t(6;7;9)(p23;p15;q21.2)[20]. Paternal chromosomes were normal. In our case the extra derivative chromosome was the result of a 4:2 segregation of the chromosomes involved in translocation during oogenesis. Double partial trisomy in newborns resulting from 4:2 segregation is a rare event, and double partial trisomies of the 6p23-pter and trisomy 9pter-q22 regions have not reported to date.  相似文献   

5.
The cell lines SW480 and SW620, derived from different stages of colon carcinoma in the same patient, have been used for a number of biochemical, immunological, and genetic studies on colon cancer. A comparative analysis of their karyotypes may identify chromosomal aberrations that might represent markers for metastatic spread. In the present study spectral karyotyping (SKY) was applied to these two colon cancer cell lines. Compared to previously reported G-banded karyotypes, 9 (SW480) and 7 (SW620) markers were identical, 3 (SW480) and 3 (SW620) markers could be redefined, 5 (SW480) and 8 (SW620) markers were newly identified, and 4 (SW480) and 5 (SW620) of the previous described markers could not be confirmed. The redefined aberrations include very complex rearrangements, such as a der(16) t(3;16;1;16;8;16; 1;16;10) and a der(18)t(18;15;17)(q12; p11p13;??) in SW620 and a der(19)t(19;8;19;5) in SW480, that have not been identified by conventional banding techniques. The resulting chromosome gains (5q11-->5q15, 7pter-->q22, 11, 13q14-->qter, 20pter-->p12, X) and losses (8pter-->p2, 18q12-->qter, Y) found in both SW480 and SW620 were in good agreement with those frequently described in colorectal tumors as primary changes in the stem cell. Abnormalities found exclusively in SW620 cells only (gains of 5pter-->5q11, 12q12-->q23, 15p13-->p11, and 16q21-->q24 and losses of 2pter-->2p24, 4q28-->qter, and 6q25-->qter) can be viewed as changes that occurred in a putative metastatic founder cell.  相似文献   

6.
We report a patient with a 46,XX,+der(18)t(18;21)(q12.2;q11.2)mat,-21 karyotype, in whom the rarely seen adjacent-2 segregation (according to the predicted pachytene diagram model) as well as two cross-overs, resulted in maternal isodisomy 18pter-->18q12.2.  相似文献   

7.
A complex mosaicism involving the X chromosome was found in a 35-year-old female affected by secondary amenorrhea and short stature. Her karyotype was: 45,X[20]/46,X,del(X)(pter-->q26::qter)[15]/46,X,idic(X)(pter-->q26::q26-->pter)[9]. No cell contained both abnormal X chromosomes. This observation would suggest a possible mechanism underlying the formation of isodicentric chromosomes.  相似文献   

8.
A dysmorphic newborn with 45,x,der(1)inv(1)(p13;qter)t(y;1)(pter-->q11;p13),-Y de novo karyotype: Y/autosome translocations are very rare chromosomal rearrangements. In most cases, the long arm of the Y chromosome is translocated onto an autosome and most patients are referred because of male infertility. Y/1 translocations are very rare, and have been reported in seven patients so far. Pericentric inversions may be seen in all chromosomes and are not associated with phenotypic abnormalities. Here we report a 6-day old male baby with prenatal growth retardation, frontal bossing, hypertelorism, micrognathia, cleft soft palate, absent uvula, hypospadias, simian line in both hands and hammer toes. Cytogenetic analysis was performed with GTG-banding, C-banding and FISH analysis containing X centromeric probe, Yq12-qter locus specific probe and whole chromosome Y probe. An unbalanced Y/1 translocation was diagnosed: 45,X,der(1)inv(1)(p13;qter)t(Y;1)(pter-->q11;p13),-Y.  相似文献   

9.
This report includes a patient with an inherited pericentric inversion of chromosome No. 2 in addition to a Robertsonian translocation resulting in trisomy for chromosome 13q. The chromosomal constitution of the proband was 46,XX,inv(2) (pter leads to p11 : : q14 leads to p11 : : q14 leads to qter); t(13,14) (13qter leads to 13p11 : : 14q11 leads to 14qter). Sequential QFQ, RFA and GTG banding techniques were employed on the chromosomes of all family members. The chromosomal constitutions of the father and his first child were normal while the mother had an inversion of chromosome No. 2 [46,XX,inv(2) (pter leads to p11 : : q14 leads to p11 : : q14 leads to qter)]. The proband inherited this abnormal chromosome. In addition, she had a de novo Robertsonian translocation involving chromosomes 13q and 14q resulting in trisomy of chromosome 13q.  相似文献   

10.
Chromosome analysis performed on a 30-year-old man revealed a 46,Y,der(X),t(X;Y)(qter-->p22::q11-->qter) karyotype, confirmed by fluorescence in situ hybridization (FISH). The man was of short stature, and no mental retardation was noticed; genitalia and testes were normal, as were the patient's FSH, LH, and testosterone blood levels. Sperm analysis showed azoospermia at the time of the first sampling and severe oligozoospermia, with 125,000 spermatozoa/milliliter, at the time of the second sampling. The sperm gonosomal complement of this patient and of a 46,XY donor were analyzed using multicolor FISH with X- and Y-chromosome probes. Our results clearly indicated that germinal cells carrying the translocation are able to complete the meiotic process by producing spermatozoa compatible with normal embryonic development, with more than 80% of the spermatozoa having either a Y chromosome or a der(X); however, a high level of spermatozoa with gonosomal disomies was observed. We also found a significant increase in the frequency of autosomal disomies in the carrier, which would suggest an interchromosomal effect. All previously reported cases in adult males were associated with azoospermia; testicular histological studies, performed in patients carrying the same X;Y translocation, showed spermatogenetic arrest after pachytene. To our knowledge, this is the first molecular analysis of the gonosomal complement in spermatozoa of men with a t(X;Y)(qter-->p22::q11-->qter).  相似文献   

11.
A couple was referred for cytogenetic examination due to idiopathic miscarriages. The proband proved to be a carrier of chromosomal translocation and her partner's karyotype was found to be normal. The karyotype of the proband is 46,XX,t(4;22)(q23;q11.2) and can be regarded as a reason of fertility problems in the investigated couple. The risk of further miscarriages is high, but the risk of a progeny with abnormal karyotype is rather low, as the progeny would probably have lethal imbalances.  相似文献   

12.
We report on a currently six-year-old patient with a de novo complex chromosome rearrangement (CCR) involving chromosomes 2 and 12. A translocation 2;12 that appeared to be reciprocal after standard banding turned out to be a complex event with seven breaks after molecular cytogenetic analyses. Array CGH analysis showed no imbalances at the breakpoints but revealed an additional microdeletion of about 80 kb on chromosome 11. The same deletion was also present in the phenotypically normal father. The patient showed relatively mild mental retardation, defined mainly as impaired speech development (orofacial dyspraxia) and psychomotor retardation. In addition, mild dysmorphic facial features like hypertelorism, a prominent philtrum and down-turned corners of the mouth were observed. We narrowed down all breakpoint regions to about 100 kb, using a panel of mapped bacterial artificial chromosome (BAC) clones for fluorescence in situ hybridization (FISH). BACs spanning or flanking all seven breakpoints were identified and no chromosomal imbalances were found consistent with the array CGH results. Our investigations resulted in the following karyotype: 46,XY,t(2;12)(2pter-->2p25.3::2p23.3-->2p25.2::2p23.3-->2p14::2q14.3-->2p14::2q14.3-->2q14.3::12q 12-->12qter;12pter-->12q12::2p25.3-->2p25.2::2q14.3-->2qter).  相似文献   

13.
14.
A child with monosomy for the distal part of the short arm of chromosome 3 (3p25-->pter) and trisomy for the terminal portion of the long arm of chromosome 17 (17q23-->qter) is presented. This unbalanced karyotype was derived from a balanced reciprocal 3p/17q translocation in the phenotypically normal mother. Main clinical features in the proband included growth and mental retardation, hypotonia, hirsutism, micro/brachycephaly, triangular face, synophris, broad and full nose, long philtrum, narrow upper lip, low set, posteriorly turned ears, anteriorly placed anus and congenital heart defect (Tetralogy of Fallot). Most of these clinical manifestations have been constantly reported in previous cases with terminal 3p deletion.  相似文献   

15.
An infant deceased at 2 months of age was found to have a 46,XY,-10, +der(10),t (6;10) (q23;q26) mat karyotype. Since the clinical findings were similar to those of the trisomy 6qter syndrome, the present observation agrees with the assignment of the 6q23----qter segment as the pathogenetic determiner of this entity.  相似文献   

16.
I V Butomo  M V Mashkova 《Tsitologiia》1977,19(11):1291-1296
A child with the Down syndrome revealed besides a regular trisomy 21, an enlargment of the short arm of chromosome 10, and the deletion of the long arm of chromosome 12. The proband's mother, who was phenothypically normal woman, appeared to be a carrier of the reciprocal translocation, her karyotype being: 46, XX, rep (10;12) (10qter leads to leads to 10p14; 12q21 leads to 12qter; 12pter leads to 12q21 : 10p14 leads to 10pter). Hence, the proband had double chromosomal aberration 47, XX, +21, rcp (10; 12) (10qter leads to 10p14 : 12q21 leads to leads to 12qter; 12pter leads to 12q21 : 10p14 leads to 10pter) mat. There is no reason to relate hard manifistation of the Down syndrome with the detected translocation. The influence of the mathernal non-devision in the meiosis and the rise of the trisomy 21 is discussed. In the following pregnancies it is advisable to amniocentesis.  相似文献   

17.
A family is reported in which a man with a balanced reciprocal translocation [46,XY,t(7;22)(q32;q13.3)] fathered a daughter who was trisomic for the region 7q32----7qter and monosomic for 22q13.3----22qter, and a male fetus who was monosomic for 7q32----qter and trisomic for 22q13.3----22qter. The meiotic segregation of this translocation, as well as the phenotypes of the unbalanced offspring, are discussed.  相似文献   

18.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

19.
A two-year-old girl has the following features of the cri du chat syndrome: microcephaly, hypertelorism, downward slanting of the palpebral fissures, psychomotor retardation and a cat-like cry. She is only of five patients having the cat cry syndrome with 45 chromosomes. Her karyotype is 45,XX, -5, -14, +t(5; 14)(5qter leads to 5p11: : 14q11 leads to 14qter) with the translocation inherited from her mother and maternal grandmother, each of whom is the carrier of a balanced translocation 46,XX,t(5;14)(p11q11). Normal plasma activity for hexosaminidase B suggests the locus for this enzyme is not located in the delected segment of 5 p.  相似文献   

20.
An 8-year-old boy presenting with hypotonia, moderate mental retardation, developmental delay, and psychomotor retardation is reported. Magnetic resonance imaging of the brain at age 3 years revealed a Dandy-Walker variant. Cytogenetic analysis of the peripheral blood revealed a derivative chromosome 12 with unknown additional material attached to the distal region of the long arm of chromosome 12. The parental karyotypes were normal. Spectral karyotyping (SKY) using the 24-color SKY probes and fluorescence in situ hybridization (FISH) using the specific 7p, 7q, 12p, and 12q telomeric probes confirmed a duplication of distal 7p and a deletion of terminal 12q. The karyotype of the proband was designated as 46,XY.ish der(12)t(7;12) (p21.2;q24. 33)(SKY+, 7pTEL+, 12qTEL-). The present case provides evidence for the association of partial trisomy 7p (7p21.2-->pter) and partial monosomy 12q (12q24.33-->qter) with a cerebellar malformation and the usefulness of SKY and FISH in the identification of a de novo aberrant chromosome resulting from an unbalanced translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号