首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human model allowing the non-invasive study of bone marrow haemodynamics has been developed. A decrease in postischaemic tissue reperfusion capability (postischaemic hyperaemia) as a function of age (range 25-72 years) was observed both in the human tibia and tibialis anterior muscle. In the tibia bone marrow the reperfusion capability started to decrease after 50 years and was lower than for muscle for all the age range. Mean basal muscle O(2) saturation (80.8% at 25 years) decreases as a function of age (-0.35%+/-0.13% per year) whereas it remains constant for bone marrow (84.8+/-2.8%). A Monte Carlo simulation has been performed to evaluate the accuracy of the derived O(2) saturation measurements and has shown that this parameter is robust even in the presence of substantial noise. It has also been demonstrated that it is necessary to use a multi wavelength NIR spectrometer and a second derivative based fitting algorithm to obtain reliable measurements from the bone marrow, and that the tissue scattering changes occurring during the protocol do not allow the use of the standard near infrared spectroscopy algorithms. The human tibia bone marrow model presented here and the related measurement technique should enable access to new areas of physiological research.  相似文献   

2.

Objective

The purpose of this study was to analyze the clinical features and prognostic factors of surgical outcome of foot drop caused by lumbar degenerative disease and put forward the clinical stage.

Methods

We retrospectively reviewed 135 patients with foot drop due to lumbar degenerative disease. The clinical features and mechanism were analyzed. Age, sex, duration of palsy, preoperative muscle strength of tibialis anterior (TA), sensation defect of affected lower limb, affected foot, diagnosis and compressed nerve roots were recorded and compared with surgical outcome.

Results

Foot drop was observed in 8.1% of all inpatients of lumbar degenerative disease. L5 nerve root compression was observed in 126 of all 135 patients (93.3%). Single, double and triple roots compression was observed respectively in 43, 83, and 9 patients (31.9%, 61.5%, and 6.6%). But there was no significant relationship between preoperative muscle strength of TA and the number of compressed roots. The muscle strength of TA was improved in 113 (83.7%) patients after surgery, but it reached to >=4 in only 21 (15.6%) patients. Improvement of the muscle strength of TA was almost stable at the 6-month follow-up. At the last follow-up, the muscle strength of TA was 1, 2, 3, 4, 5 respectively in 28, 24, 62, 13, 8 patients. Multivariate logistic regression showed duration of palsy (p=0.0360, OR=2.543), preoperative muscle strength of TA (p=0.0064, OR=5.528) and age (p=0.0309, OR=3.208) were factors that influenced recovery following an operation.

Conclusions

L5 nerve root was most frequently affected. The muscle strength of TA improved in most patients after surgery, but few patients can get a good recovery from foot drop. Patients of shorter duration of palsy, better preoperative muscle strength of TA and younger age showed a better surgical outcome.  相似文献   

3.
This work estimates the influence of the single twitch (ST) parameters changes on specific regions of the force-frequency relationship (FFR) in fatigued human tibialis anterior (TA). In 20 subjects (age 20-40) the TA underwent three stimulation phases: (a) five STs at 1 Hz followed by 5 s stimulation with increasing rate (1-50 Hz, to obtain FFR); (b) fatiguing stimulation (35 Hz for 40 s); (c) same as in "a". By the average STs (mean of the five responses) of a and c phases, the peak twitch (Pt) was calculated. Moreover, after ST normalization to Pt, the maximum contraction rate (MCR) and the maximum relaxation rate (MRR) were computed. By the FFR, normalized to the 50 Hz force, we first defined the threshold frequency (TF) when the force oscillation presented the same value in (a) and (c), and then the areas below the FFR in the 1 Hz-TF and in the TF-50 Hz ranges. RESULTS: In unfatigued and fatigued muscle Pt, and MRR changed from 6.12 +/- 3.08 to 3.27 +/- 1.16 N and from 0.87 +/- 0.13 to 0.65 +/- 0.09% Pt/ms, respectively. MCR did not change significantly. The 1 Hz-TF area ratio (c/a) was > 1 for muscles having fatigued Pt > 60% of its basal value. The TF-50 Hz area ratio (c/a) was mostly below 1. CONCLUSIONS: At fatigue, MRR reduction, leading to a better fusion of muscle mechanical output, is able to compensate, in the 1 Hz-TF frequency range, up to 40% Pt loss; beyond TF, the changes of FFR are related to the degree of force loss indicated by the fatigued Pt.  相似文献   

4.
The goal of commercial yellow perch aquaculture is to increase muscle mass which leads to increased profitability. The accumulation and degradation of muscle-specific gene products underlies the variability in body mass (BM) and length observed in pond-cultured yellow perch. Our objective was to apply a combination of statistical and proteomic technologies to identify intact and/or proteolytic fragments of muscle specific gene products involved in muscle growth in yellow perch. Seventy yellow perch randomly selected at 10, 12, 16, 20, and 26 wk of age were euthanized; BM and length were measured and a muscle sample taken. Muscle proteins were resolved using 5-20% gradient SDS-PAGE, stained with SYPRO Ruby and analyzed using TotalLab software. Data were analyzed using stepwise multiple regression with the dependent variables, BM and length and proportional OD of each band in a sample as a potential regressor. Eight bands associated with BM (R(2) = 0.84) and nine bands with length (R(2) = 0.85) were detected. Protein sequencing by nano-LC/MS/MS identified 20 proteins/peptides associated with BM and length. These results contribute the identification of gene products and/or proteolytic fragments associated with muscle growth in yellow perch.  相似文献   

5.
We describe here a fluorescence assay for nitric oxide synthase activity in skeletal muscle based on a new indicator, 4,5-diaminofluorescein (DAF-2). The rapid and irreversible binding of DAF-2 to oxidized NO allows real-time measurement of NO production. The method is safer and more convenient than the usual citrulline radioassay and can be used with crude muscle extracts. Rabbit fast tibialis anterior (TA) muscle had a nitric oxide synthase (NOS) activity of 44.3 +/- 3.5 pmol/min/mg muscle. Addition of NOS blocker N(G)-allyl-L-arginine reduced this activity by 43%. Slow soleus muscle displayed NOS activity of 7.3 +/- 2.5 pmol/min/mg muscle, 16% that of the TA muscle. Continuous stimulation of TA muscle at 10 Hz for 3 weeks reduced NOS activity by 47% to an intermediate value consistent with the associated conversion of the muscle phenotype from fast to slow.  相似文献   

6.
7.
Stump, Craig S., Charles M. Tipton, and Erik J. Henriksen.Muscle adaptations to hindlimb suspension in mature and oldFischer 344 rats. J. Appl. Physiol.82(6): 1875-1881, 1997.We examined skeletal and cardiac muscleresponses of mature (8 mo) and old (23 mo) male Fischer 344 rats to 14 days of hindlimb suspension. Hexokinase (HK) and citrate synthase (CS)activities and GLUT-4 glucose transporter protein level, which arecoregulated in many instances of altered neuromuscular activity, wereanalyzed in soleus (Sol), plantaris (Pl), tibialis anterior (TA),extensor digitorum longus (EDL), and left ventricle. Protein contentwas significantly (P < 0.05) lowerin all four hindlimb muscles after suspension compared with controls inboth mature (21-44%) and old (17-43%) rats. Old ratsexhibited significantly lower CS activities than mature rats for theSol, Pl, and TA. HK activities were significantly lower in the old ratsfor the Pl (19%) and TA (33%), and GLUT-4 levels were lower in theold rats for the TA (38%) and EDL (24%) compared with the maturerats. Old age was also associated with a decrease in CS activity (12%)and an increase in HK activity (14%) in cardiac muscle. CS activitieswere lower in the Sol (20%) and EDL (18%) muscles from maturesuspended rats and in the Sol (25%), Pl (27%), and EDL (25%) musclesfrom old suspended rats compared with corresponding controls. However,suspension was associated with significantly higher HK activities forall four hindlimb muscles examined, in both old (16-57%) andmature (10-43%) rats, and higher GLUT-4 concentrations in the TAmuscles of the old rats (68%) but not the mature rats. These resultsindicate that old age is associated with decreased CS and HK activities and GLUT-4 protein concentration for several rat hindlimb muscles, andthese variables are not coregulated during suspension. Finally, old ratskeletal muscle appears to respond to suspension to a similar orgreater degree than mature rat muscle responds.

  相似文献   

8.
Recent studies have shown that cells from bone marrow (BM) can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved remain unknown. We performed BM transplantation in acid alpha-glucosidase (GAA) knockout mice, a model of glycogen storage disease type II, and our observations suggested that the BM cells contribute to skeletal muscle fiber formation. Furthermore, we showed that most CD45+:Sca1+ cells have a donor character in regenerating muscle of recipient mice. Based on these findings, CD45+:Sca1+ cells were sorted from regenerating muscles. The cell number was increased with granulocyte colony-stimulating factor after cardiotoxin injury, and the cells were transplanted directly into the tibialis anterior (TA) muscles of GAA knockout mice. Sections of the TA muscles stained with anti-laminin-alpha2 antibody showed that the number of CD45+:Sca1+ cells contributing to muscle fiber formation and glycogen levels were decreased in transplanted muscles. Our results indicated that hematopoietic stem cells, such as CD45+:Sca1+ cells, are involved in skeletal muscle regeneration.  相似文献   

9.
We examined the relationship between subglottic pressure (P), flow (V), and thyroarytenoid (TA) muscle activity in six anesthetized tracheostomized dogs while a constant flow (0.05-1.2 l/s) of warmed humidified air was passed through the upper airway in an expiratory direction. The TA activity was recorded by fine bipolar wire electrodes and was reflexly altered by changes in lung volume and chest wall compression. The integrated muscle activity was expressed as a percentage of a maximal peak integrated TA activity (%max). In the absence of TA activity the pressure-flow relationship was alinear and could be described by a power function. Log-log P-V plots at varying levels of TA activity were linear, with a slope a of 1.84 +/- 0.07 (SD). When TA activity increased, laryngeal resistance increased exponentially. An effective hydraulic diameter was calculated for increments in %max TA and decreased linearly with %max TA. In three dogs the glottic diameter was computed from glottic area measured by fiber-optic laryngoscopy, and it also decreased linearly as TA increased. Sectioning of the external motor branch of the superior laryngeal nerve to the cricothyroid muscle demonstrated no consistent effect on laryngeal resistance over a range of TA activity. The results indicate that laryngeal dimensions decrease linearly with TA activity. However, the P-V relationship of the larynx may be described by a power function, with a single exponent consistent with an orifice flow regimen. Spontaneous activity of the cricothyroid muscle does not measurably influence this relationship.  相似文献   

10.
The aim of the study was to assess the variability of EMG signal envelope with electrode location during gait. Surface EMG signals were recorded from 10 healthy subjects from the tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO) muscles. From TA, PL, GL and GM, signals were acquired using a two-dimensional grid of 4 x 3 electrodes (10 x 15 mm in size, as used in most gait laboratories) with 20-mm interelectrode distance in both directions. A similar grid of 3 x 3 electrodes was used for SO. EMG envelope was characterized by its peak value, area after normalization by the peak value, and time instant corresponding to the maximum. The maximum relative change in peak value with electrode location, expressed as a percentage of the peak value in the central location, was (mean+/-SD) 31+/-18% for TA, 29+/-13% for PL, 25+/-15% for GL, 14+/-8% for GM, and 26+/-14% for SO. The maximum relative change in area was 29+/-13% for TA, 73+/-40% for PL, 31+/-23% for GL, 35+/-20% for GM, 20+/-13% for SO, and in the position of maximum, computed as distance from the maximum position in the central channel, it was 5+/-10% of the gait cycle for TA, 26+/-16% for PL, 3+/-2% for GL, 3+/-1% for GM, 3+/-3% for SO. A crosstalk index, defined on the basis of the expected intervals of muscle activation for healthy subjects, indicated that estimated crosstalk was present between TA and PL, in an amount which depended on electrode location. It was concluded that the estimate of muscle activation intensity during gait from surface EMG is variable with location of the electrodes while timing of muscle activity is more robust to electrode displacement and can be reliably extracted in those cases in which crosstalk is limited. These results are valid for healthy subjects, where the level of muscular activity during gait is much lower than maximum.  相似文献   

11.
12.
To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles’ areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue “quality” (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.  相似文献   

13.
The effects of Ascaris suum antigen on tracheal circulation and tracheal smooth muscle tone were compared in two groups of sheep: the first group was 1 yr old (14 sheep) and the second 5 yr old (8 sheep). Cranial tracheal arteries of anesthetized and paralyzed sheep were perfused at constant flow with monitoring of perfusion pressure. Tracheal smooth muscle tone was assessed by measuring changes in the external diameter of the cranial trachea. Close-arterial injection of antigen (1-20 micrograms) in young sheep produced dose-dependent vasodilation (6.1-15.5% fall in perfusion pressure) and smooth muscle contraction (0.06-0.28 mm reduction in tracheal diam). In old sheep, antigen (1-20 micrograms) produced vasoconstriction (4.1-16.8%) but no smooth muscle response. The smooth muscle contraction in young sheep was blocked by mepyramine (2 mg/kg iv) suggesting mediation by release of histamine. The vasodilation in young sheep and the vasoconstriction in old sheep were reduced by indomethacin (5 mg/kg iv), and the residual response was further reduced by FPL 55712 (2 mg/kg iv), suggesting mediation by both cyclooxygenase products and leukotrienes. Thus antigen given in the tracheal vasculature releases a mixture of inflammatory mediators. This mixture of mediators or their actions on the tracheal vasculature and smooth muscle may depend on the age of the sheep.  相似文献   

14.
High visceral adiposity and intramyocellular lipid levels (IMCL) are both associated with the development of type 2 diabetes. The relationship between visceral adiposity and IMCL levels was explored in diet- and glucocorticoid-induced models of insulin resistance. In the diet-induced model, lean and fa/fa Zucker rats were fed either normal or high-fat (HF) chow over 4 wk. Fat distribution, IMCL content in the tibialis anterior (TA) muscle (IMCL(TA)), and whole body insulin resistance were measured before and after the 4-wk period. The HF diet-induced increase in IMCL(TA) was strongly correlated with visceral fat accumulation and greater glucose intolerance in both groups. The increase in IMCL(TA) to visceral fat accumulation was threefold greater for fa/fa rats. In the glucocorticoid-induced model, insulin sensitivity was impaired with dexamethasone. In vivo adiposity and IMCL(TA) content measurements were combined with ex vivo analysis of plasma and muscle tissue. Dexamethasone treatment had minimal effects on visceral fat accumulation while increasing IMCL(TA) levels approximately 30% (P < 0.05) compared with controls. Dexamethasone increased plasma glucose by twofold and increased the saturated fatty acid content of plasma lipids [fatty acid (CH2)n/omegaCH3 ratio +15%, P < 0.05]. The lipid composition of the TA muscle was unchanged by dexamethasone treatment, indicating that the relative increase in IMCL(TA) observed in vivo resulted from a decrease in lipid oxidation. Visceral adiposity may influence IMCL accumulation in the context of dietary manipulations; however, a "causal" relationship still remains to be determined. Dexamethasone-induced insulin resistance likely operates under a different mechanism, i.e., independently of visceral adiposity.  相似文献   

15.
Transcranial Doppler ultrasound-determined middle (MCA) and anterior (ACA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes (PI) were measured during "no-load" [21, 60, and 102 revolutions/min (rpm)] and loaded cycling (30, 60, and 149 W) at approximately 60 rpm. At rest Vmean MCA was 51 (36-55) cm/s (median and range; n = 10) and Vmean ACA was 41 (36-49) cm/s (n = 7; P < 0.05). With no load on the cycle Vmean MCA increased 4 (2-36), 10 (0-47), and 27% (4-58) (P < 0.05) at the three pedaling frequencies, respectively; arterial PCO2 (PaCO2) remained constant. During loaded cycling the increases were 19 (6-42), 25 (2-45), and 32% (12-67) (P < 0.01), respectively, with only a minimal change in PaCO2. No significant changes were observed in Vmean ACA. Changes in Vmean MCA were similar to those recorded by the initial slope index (ISI) of the 133Xe clearance method (n = 11), which in turn were smaller than increases recorded by the fast-compartment flow. PI ACA followed PI MCA during no-load as well as loaded exercise and increased with work rate, perhaps reflecting an increase in pulse pressure from 56 (48-63) mmHg at rest to 109 (88-123) mmHg at 149 W (P < 0.01). Data demonstrate a graded increase in regional cerebral perfusion during dynamic exercise corresponding to the MCA territory.  相似文献   

16.
Immunoassayable and bioassayable growth hormone responses to vibration-induced activation of muscle spindle afferents of the soleus (Sol) or tibialis anterior (TA) muscles were studied in 10 men. Subjects were supine while a 10-min vibration stimulus (100 Hz; 1.5-mm amplitude) was applied to the muscle, with each of the muscles tested on separate days. Blood samples were collected before, during, immediately after, and after 5 and 10 min of vibration. Plasma growth hormone concentrations were determined by radioimmunoassay (IGH) for all sampling periods and by bioassay (BGH; measurement of tibial epiphysial cartilage growth in hypophysectomized rats) for samples obtained before and immediately after vibration. Plasma IGH concentrations were similar at all time points during the Sol or TA experiments. After 10 min of muscle vibration, mean plasma BGH was elevated 94% [1,216 +/- 148 (SD) to 2, 362 +/- 487 microg/l; P = 0.0001] for TA and decreased 22% (1,358 +/- 155 to 1,058 +/- 311 microg/l; P = 0.09) for Sol. These data demonstrate that activation of TA muscle spindle afferents increases circulating BGH but not IGH. The absence of a similar vibration-induced BGH response for the Sol indicates a differential regulation of BGH release by these two predominantly slow muscles, perhaps related to their respective flexor and extensor functions. These data indicate that a muscle afferent-pituitary axis modulates the release of BGH, but not IGH, from the pituitary in humans and that this axis is muscle specific, similar to that observed in rats.  相似文献   

17.
Recent experiments to characterize the short-range stiffness (SRS)–force relationship in several cat hindlimb muscles suggested that the there are differences in the tendon elastic moduli across muscles [Cui, L., Perreault, E.J., Maas, H., Sandercock, T.G., 2008. Modeling short-range stiffness of feline lower hindlimb muscles. J. Biomech. 41 (9), 1945–1952.]. Those conclusions were inferred from whole muscle experiments and a computational model of SRS. The present study sought to directly measure tendon elasticity, the material property most relevant to SRS, during physiological loading to confirm the previous modeling results. Measurements were made from the medial gastrocnemius (MG), tibialis anterior (TA) and extensor digitorum longus (EDL) muscles during loading. For the latter, the model indicated a substantially different elastic modulus than for MG and TA. For each muscle, the stress–strain relationship of the external tendon was measured in situ during the loading phase of isometric contractions conducted at optimum length. Young's moduli were assessed at equal strain levels (1%, 2% and 3%), as well as at peak strain. The stress–strain relationship was significantly different between EDL and MG/TA, but not between MG and TA. EDL had a more apparent toe region (i.e., lower Young's modulus at 1% strain), followed by a more rapid increase in the slope of the stress–strain curve (i.e., higher Young's modulus at 2% and 3% strain). Young's modulus at peak strain also was significantly higher in EDL compared to MG/TA, whereas no significant difference was found between MG and TA. These results indicate that during natural loading, tendon Young's moduli can vary considerably across muscles. This creates challenges to estimating muscle behavior in biomechanical models for which direct measures of tendon properties are not available.  相似文献   

18.
Satellite cells (SCs) are the main source of new fibers in regenerating skeletal muscles and the key contributor to extra nuclei in growing fibers during postnatal development. Aging results in depletion of the SC population and in the reduction of its proliferative activity. Although it has been previously determined that under conditions of massive fiber death in vivo the regenerative potential of SCs is not impaired in old muscle, no studies have yet tested whether advanced age is a factor that may restrain the response of SCs to muscle denervation. The present study is designed to answer this question, comparing the changes of SC numbers in tibialis anterior (TA) muscles from young (4 months) and old (24 months) WI/HicksCar rats after 2 months of denervation. Immunostaining with antibodies against M-cadherin and NCAM was used to detect and count the SCs. The results demonstrate that the percentages of both M-cadherin- and NCAM-positive SCs (SC/Fibers x 100) in control TA muscles from young rats (5.6 +/- 0.5% and 1.4 +/- 0.2%, respectively) are larger than those in old rats (2.3 +/- 0.3% and 0.5 +/- 0.1%, respectively). At the same time, in 2-month denervated TA muscles the percentages of M-cadherin and NCAM positive SC are increased and reach a level that is comparable between young (16.2 +/- 0.9% and 7.5 +/- 0.5%, respectively) and old (15.9 +/- 0.7% and 10.1 +/- 0.5%, respectively) rats. Based on these data, we suggest that aging does not repress the capacity of SC to become activated and grow in the response to muscle denervation.  相似文献   

19.
Recent studies have shown that thinning of human cartilage occurs with unloading, but no data are available on the effect of remobilization (after immobilization) on knee joint cartilage status in humans. We examined a 36-year-old patient after 6 weeks of unilateral immobilization. Knee joint cartilage morphology (patella and tibia), patellar cartilage deformation, and thigh muscle cross-sectional areas were assessed with quantitative MR imaging and bone density with peripheral quantitative computed tomography (pQCT) during 24 months of remobilization. The immobilized limb displayed lower muscle cross-sectional areas (MCSA) of the knee extensors (-36%), lower bone density of the femur and tibia (-12/-6%), lower patellar cartilage thickness (-14%), but no side differences of tibial cartilage thickness. During remobilization, side differences decreased to -4% for knee extensor MCSAs, to -6%/-3% for femoral and tibial BMD, and to -8% for patellar cartilage thickness. No change was observed in tibial cartilage. Patellar deformation decreased from 9% to 4% after 15 months. In conclusion, we observed substantial changes of thigh MCSAs, but little (patella) to no (tibia) change in cartilage thickness during remobilization. These preliminary results indicate that human cartilage macro-morphology may be less adaptive to variations of the mechanical loading than muscle and bone.  相似文献   

20.
In vitro studies have used protein markers to distinguish between myogenic cells isolated from fast and slow skeletal muscles. The protein markers provide some support for the hypothesis that satellite cells from fast and slow muscles are different, but the data are equivocal. To test this hypothesis directly, three-dimensional skeletal muscle constructs were engineered from myogenic cells isolated from fast tibialis anterior (TA) and slow soleus (SOL) muscles of rats and functionality was tested. Time to peak twitch tension (TPT) and half relaxation time (RT1/2) were 30% slower in constructs from the SOL. The slower contraction and relaxation times for the SOL constructs resulted in left shift of the force-frequency curve compared with those from the TA. Western blot analysis showed a 60% greater quantity of fast myosin heavy chain in the TA constructs. 14 days of chronic low-frequency electrical stimulation resulted in a 15% slower TPT and a 14% slower RT1/2, but no change in absolute force production in the TA constructs. In SOL constructs, slow electrical stimulation resulted in an 80% increase in absolute force production with no change in TPT or RT1/2. The addition of cyclosporine A did not prevent the increase in force in SOL constructs after chronic low-frequency electrical stimulation, suggesting that calcineurin is not responsible for the increase in force. We conclude that myogenic cells associated with a slow muscle are imprinted to produce muscle that contracts and relaxes slowly and that calcineurin activity cannot explain the response to a slow pattern of electrical stimulation. tissue engineering; calcineurin; electrical stimulation; engineered muscle; bioreactors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号