首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that human and bovine dopamine beta-hydroxylases (DBH) exist under three main molecular forms: a soluble nonamphiphilic form and two amphiphilic forms. Sedimentation in sucrose gradients and electrophoresis under nondenaturing conditions, by comparison with acetylcholinesterase (AChE), suggest that the three forms are tetramers of the DBH catalytic subunit and bind either no detergent, one detergent micelle, or two detergent micelles. By analogy with the Gna4 and Ga4 AChE forms, we propose to call the nonamphiphilic tetramer Dna4 and the amphiphilic tetramers Da4I and Da4II. In addition to the major tetrameric forms, DBH dimers occur as very minor species, both amphiphilic and nonamphiphilic. Reduction under nondenaturing conditions leads to a partial dissociation of tetramers into dimers, retaining their amphiphilic character. This suggests that the hydrophobic domain is not linked to the subunits through disulfide bonds. The two amphiphilic tetramers are insensitive to phosphatidylinositol phospholipase C, but may be converted into soluble DBH by proteolysis in a stepwise manner; Da4II----Da4I----Dna4. Incubation of soluble DBH with various phospholipids did not produce any amphiphilic form. Several bands corresponding to the catalytic subunits of bovine DBH were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but this multiplicity was not simply correlated with the amphiphilic character of the enzyme. In the case of human DBH, we observed two bands of 78 and 84 kDa. As previously reported by others, the presence of the heavy subunit characterizes the amphiphilic forms of the enzyme. We discuss the nature of the hydrophobic domain, which could be an uncleaved signal peptide, and the organization of the different amphiphilic and nonamphiphilic DBH forms. We present two models in which dimers may possess either one hydrophobic domain or two domains belonging to each subunit; in both cases, a single detergent micelle would be bound per dimer.  相似文献   

2.
Abstract— An analysis of the [3H]DFP-labelled catalytic subunits of mammalian (bovine SCG) acetylcholinesterase (AChE, EC 3.1.1.7.) indicates a monomer molecular weight of 75,000. This is equivalent to the mass previously determined for the smallest active form and demonstrates that the globular, or G forms, are respectively monomeric (G1 form, 4S), dimeric (G2 form, 6.5S) and tetrameric (G4 form, 10S). In the tetrameric G4 form the catalytic chains are associated in dimers, by disulphide bonds.
The effect of reduction and proteolysis has shown that the dimeric form (G2 form, 6.5S) is readily reduced into G1, while the tetramer G4 is very stable, being only dissociated by a combination of reduction and proteolysis by high concentration of trypsin. The asymmetric forms A12 (16S), A8 (13S) and A4 (9S) are not sensitive to reduction, but are readily dissociated by low concentrations of trypsin, into each other, progressively liberating isolated tetramers. We obtained essentially identical results with AChE preparations from rat brain or superior cervical ganglion. These observations support a general model for the quaternary structure of acetylcholinesterase molecular forms.  相似文献   

3.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

4.
The mouse neuroblastoma cell line NB2A produces cellular and secreted acetylcholinesterase (AChE). After incubation of the cells for 4 days the ratio between AChE secreted into the medium and AChE in the cells was 1:1. The cell-associated enzyme could be subdivided into soluble AChE (25%) and detergent-soluble AChE (75%). Both extracts contained predominantly monomeric AChE (4.6S) and minor amounts of tetrameric AChE (10.6S), whereas the secreted AChE in the culture supernatant contained only the tetrameric form. All forms were partially purified by affinity chromatography. It could be demonstrated that the secretory and the intracellular soluble tetramers were hydrophilic, whereas the detergent-soluble tetramer was an amphiphilic protein. On the other hand the soluble and the detergent-soluble monomeric forms were amphiphilic and their activity depended on the presence of detergent. By digestion with proteinase K amphiphilic monomeric and tetrameric AChE could be converted to a hydrophilic form that no longer required detergent for catalytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [3H]diisopropylfluorophosphate-labelled AChE gave one band at 64 kilodaltons (kD) under reducing conditions and two additional bands at 120 kD and 140 kD under nonreducing conditions.  相似文献   

5.
The C-terminal t peptide (40 residues) of vertebrate acetylcholinesterase (AChE) T subunits possesses a series of seven conserved aromatic residues and forms an amphiphilic alpha-helix; it allows the formation of homo-oligomers (monomers, dimers and tetramers) and heteromeric associations with the anchoring proteins, ColQ and PRiMA, which contain a proline-rich motif (PRAD). We analyzed the influence of mutations in the t peptide of Torpedo AChE(T) on oligomerization and secretion. Charged residues influenced the distribution of homo-oligomers but had little effect on the heteromeric association with Q(N), a PRAD-containing N-terminal fragment of ColQ. The formation of homo-tetramers and Q(N)-linked tetramers required a central core of four aromatic residues and a peptide segment extending to residue 31; the last nine residues (32-40) were not necessary, although the formation of disulfide bonds by cysteine C37 stabilized T(4) and T(4)-Q(N) tetramers. The last two residues of the t peptide (EL) induced a partial intracellular retention; replacement of the C-terminal CAEL tetrapeptide by KDEL did not prevent tetramerization and heteromeric association with Q(N), indicating that these associations take place in the endoplasmic reticulum. Mutations that disorganize the alpha-helical structure of the t peptide were found to enhance degradation. Co-expression with Q(N) generally increased secretion, mostly as T(4)-Q(N) complexes, but reduced it for some mutants. Thus, mutations in this small, autonomous interaction domain bring information on the features that determine oligomeric associations of AChE(T) subunits and the choice between secretion and degradation.  相似文献   

6.
PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys(317) and Cys(318) are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3(-/-) mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3(-/-) mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.  相似文献   

7.
Miguel V  Monti MR  Argaraña CE 《DNA Repair》2008,7(11):1799-1808
The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.  相似文献   

8.
To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.  相似文献   

9.
Small heat shock proteins (sHSPs), which range in monomer size between 12 and 42 kDa, are characterized by a conserved C-terminal alpha-crystallin domain of 80-100 residues. They generally form large homo- or heteromeric complexes, and typically have in vitro chaperone-like activity, keeping unfolding proteins in solution. A special type of sHSP, with a duplicated alpha-crystallin domain, is present in parasitic flatworms (Platyhelminthes). Considering that an alpha-crystallin domain is essential for the oligomerization and chaperone-like properties of sHSPs, we characterized Tsp36 from the tapeworm Taenia saginata. Both wild-type Tsp36 and a mutant (Tsp36C-->R) in which the single cysteine has been replaced by arginine were expressed and purified. Far-UV CD measurements of Tsp36 were in agreement with secondary structure predictions, which indicated alpha-helical structure in the N-terminal region and the expected beta-sandwich structure for the two alpha-crystallin domains. Gel permeation chromatography and nano-ESI-MS showed that wild type Tsp36 forms dimers in a reducing environment, and tetramers in a non-reducing environment. The tetramers are stabilized by disulfide bridges involving a large proportion of the Tsp36 monomers. Tsp36C-->R exclusively occurs as dimers according to gel permeation chromatography, while the nondisulfide bonded fraction of wild type Tsp36 dissociates from tetramers into dimers under nonreducing conditions at increased temperature (43 degrees C). The tetrameric form of Tsp36 has a greater chaperone-like activity than the dimeric form.  相似文献   

10.
Tissue-cultured chicken embryo muscle cells synthesize several molecular forms of acetylcholinesterase (AChE) which differ in oligomeric structure and fate as membrane-bound or secreted molecules. Using irreversible inhibitors to inactivate AChE molecules we show that muscle cells rapidly synthesize and assemble catalytically active oligomers which transit an obligatory pathway through the Golgi apparatus. These oligomers acquire complex oligosaccharides and are ultimately localized on the cell surface or secreted into the medium. Immunoprecipitation of isotopically labeled AChE shows that the oligomers are assembled shortly after synthesis from two allelic polypeptide chains. About two-thirds of the newly synthesized molecules are assembled into dimers and tetramers, and once assembled these forms do not interconvert. Comparison of newly synthesized catalytically active AChE molecules with isotopically labeled ones indicates that a large fraction of the immature molecules are catalytically inactive. Pulse-chase studies measuring both catalytic activity and isotopic labeling indicate that only the catalytically active oligomers are further processed by the cell, whereas inactive molecules are rapidly degraded intracellularly by an as yet unknown mechanism. Approximately 70-80% of the newly synthesized AChE molecules are degraded in this manner and do not transit the Golgi apparatus. These studies indicate that muscle cells synthesize an excess of this important synaptic component over that which is necessary for maintaining normal levels of this protein. In addition, these studies indicate the existence of an intracellular route of protein degradation which may function as a post-translational regulatory step in the control of exportable proteins.  相似文献   

11.
Aldehyde dehydrogenases are isolated as dimers or tetramers but have essentially identical structures. The homotetramer (ALDH1 or ALDH2) is a dimer of dimers (A-B + C-D). In the tetrameric enzyme, Ser500 from subunit "D" interacts with Arg84, a conserved residue, from subunit "A". In the dimeric ALDH3 form, the interaction cannot exist. It has been proposed that the formation of the tetramer is prevented by the presence of a C-terminal tail in ALDH3 that is not present in ALDH1 or 2. To understand the forces that maintain the tetramer, deletion of the tail in ALDH3, addition of different tails in ALDH1, and mutations of different residues located in the dimer-dimer interface were made. Gel filtration of the recombinantly expressed enzymes demonstrated that no change in their oligomerization occurred. Urea denaturation showed a diminution to the stability of the ALDH1 mutants. The K(m) for propionaldehyde was similar to that of the wild-type enzyme, but the K(m) for NAD was altered. A double mutant of D80G and S82A produced an enzyme with the ability to form dimers and tetramers in a protein-concentration-dependent manner. Though stable, this dimeric form was inactive. The tetramer exhibited 10% activity compared with the wild type. Sequence alignment demonstrated that the hydrophobic surface area is increased in the tetrameric enzymes. The hydrophobic surface seems to be the main force that drives the formation of tetramers. The results indicated that residues 80 and 82 are involved in maintaining the tetramer after its assembly but the C-terminal extension contributes to the overall stability of the assembled protein.  相似文献   

12.
13.
Bovine IF(1), a basic protein of 84 amino acids, is involved in the regulation of the catalytic activity of the F(1) domain of ATP synthase. At pH 6.5, but not at basic pH values, it inhibits the ATP hydrolase activity of the enzyme. The oligomeric state of bovine IF(1) has been investigated at various pH values by sedimentation equilibrium analytical ultracentrifugation and by covalent cross-linking. Both techniques confirm that the protein forms a tetramer at pH 8, and below pH 6.5, the protein is predominantly dimeric. By covalent cross-linking, it has been found that at pH 8.0 the fragment of IF(1) consisting of residues 44-84 forms a dimer, whereas the fragment from residues 32-84 is tetrameric. Therefore, some or all of the residues between positions 32 and 43 are necessary for tetramer formation and are involved in the pH-sensitive interconversion between dimer and tetramer. One important residue in the interconversion is histidine 49. Mutation of this residue to lysine abolishes the pH-dependent activation-inactivation, and the mutant protein is active and dimeric at all pH values investigated. It is likely from NMR studies that the inhibitor protein dimerizes by forming an antiparallel alpha-helical coiled-coil over its C-terminal region and that at high pH values, where the protein is tetrameric, the inhibitory regions are masked. The mutation of histidine 49 to lysine is predicted to abolish coiled-coil formation over residues 32-43 preventing interaction between two dimers, forcing the equilibrium toward the dimeric state, thereby freeing the N-terminal inhibitory regions and allowing them to interact with F(1).  相似文献   

14.
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.  相似文献   

15.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is the only member of the lipocalin superfamily that displays enzymatic activity. It binds lipophilic ligands with high affinity and also can catalyze PGH2 to produce PGD2. Three cysteine residues, Cys65, Cys89, and Cys186 in L-PGDS, are conserved among all species, of which Cys89 and Cys186 residues form a disulfide bridge. In this study, we clarified the effects of thiol groups on the structure of the protein and investigated the structural significance of Cys residues of rat L-PGDS by site-directed mutagenesis. Four mutants were constructed by substituting Cys residues with alanine to identify the correct formation of disulfide bonds among these three residues. The effects of thiol groups on the structure of rat L-PGDS were also identified by these mutants. Analysis of HSQC experiments indicated that these enzymes were all properly folded with well defined tertiary structures. As the first step towards the 3-D nuclear magnetic resonance solution structure, we optimized expression of recombinant rat L-PGDS in Escherichia coli and established an efficient and economic purification protocol yielding large amounts of pure isotopically labeled rat L-PGDS. The results of assignments indicated that the wild-type rat L-PGDS obtained using this expression system was suitable for determination of 3-D nuclear magnetic resonance solution structure.  相似文献   

16.
The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.  相似文献   

17.
Structural evolution of C-terminal domains in the p53 family   总被引:1,自引:0,他引:1  
Ou HD  Löhr F  Vogel V  Mäntele W  Dötsch V 《The EMBO journal》2007,26(14):3463-3473
The tetrameric state of p53, p63, and p73 has been considered one of the hallmarks of this protein family. While the DNA binding domain (DBD) is highly conserved among vertebrates and invertebrates, sequences C-terminal to the DBD are highly divergent. In particular, the oligomerization domain (OD) of the p53 forms of the model organisms Caenorhabditis elegans and Drosophila cannot be identified by sequence analysis. Here, we present the solution structures of their ODs and show that they both differ significantly from each other as well as from human p53. CEP-1 contains a composite domain of an OD and a sterile alpha motif (SAM) domain, and forms dimers instead of tetramers. The Dmp53 structure is characterized by an additional N-terminal beta-strand and a C-terminal helix. Truncation analysis in both domains reveals that the additional structural elements are necessary to stabilize the structure of the OD, suggesting a new function for the SAM domain. Furthermore, these structures show a potential path of evolution from an ancestral dimeric form over a tetrameric form, with additional stabilization elements, to the tetramerization domain of mammalian p53.  相似文献   

18.
Monoclonal antibodies of two clones reacting with the nonnative forms of d-glyceraldehyde-3-phosphate dehydrogenase, EC 1.2.1.12 (GAPDH), were obtained. Antibodies of clone 6C5 belonged to IgG1 subtype; antibodies of clone 6G7 belonged to IgM type. The interaction of antibodies of both clones with the immobilized and soluble enzyme was studied. The specificity of antibodies to the definite oligomeric forms was demonstrated on immobilized monomers, dimers, and tetramers of GAPDH. The affinity of antibodies to monomeric and dimeric forms of GAPDH, either active or not, was demonstrated. At the same time the antibodies did not react with the tetrameric enzyme. The binding of antibodies had no influence on the enzymatic activity. However, the addition of antibodies to the denatured enzyme blocked the spontaneous renaturation of GAPDH. The immobilized antibodies of both clones were successfully used for the purification of GAPDH solution from the denatured admixtures.  相似文献   

19.
Saxena A  Hur RS  Luo C  Doctor BP 《Biochemistry》2003,42(51):15292-15299
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.  相似文献   

20.
Massoulié J 《Neuro-Signals》2002,11(3):130-143
Vertebrates possess two cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which both hydrolyze acetylcholine, but differ in their specificity towards other substrates, and in their sensitivity to inhibitors. In mammals, the AChE gene produces three types of coding regions through the choice of 3' splice acceptor sites, generating proteins which possess the same catalytic domain, associated with distinct C-terminal peptides. AChE subunits of type R ('readthrough') produce soluble monomers; they are expressed during development and induced by stress in the mouse brain. AChE subunits of type H ('hydrophobic') produce GPI-anchored dimers, but also secreted molecules; they are mostly expressed in blood cells. Subunits of type T ('tailed') exist for both AChE and BChE. They represent the enzyme forms expressed in brain and muscle. These subunits generate a variety of quaternary structures, including homomeric oligomers (monomers, dimers, tetramers), as well as hetero-oligomeric assemblies with anchoring proteins, ColQ and PRiMA. Mutations in the four-helix bundle (FHB) zone of the catalytic domain indicate that subunits of type H and T use the same interaction for dimerization. On the other hand, the C-terminal T peptide is necessary for tetramerization. Four T peptides, organized as amphiphilic alpha helices, can assemble around proline-rich motifs of ColQ or PRiMA. The association of AChE(T) or BChE subunits with ColQ produces collagen-tailed molecules, which are inserted in the extracellular matrix, e.g. in the basal lamina of neuromuscular junctions. Their association with PRiMA produces membrane-bound tetramers which constitute the predominant form of cholinesterases in the mammalian brain; in muscles, the level of PRiMA-anchored tetramers is regulated by exercise, but their functional significance remains unknown. In brain and muscles, the hydrolysis of acetylcholine by cholinesterases, in different contexts, and their possible noncatalytic functions clearly depend on their localization by ColQ or PRiMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号