共查询到20条相似文献,搜索用时 12 毫秒
1.
Production of human erythropoietin by chimeric chickens 总被引:1,自引:0,他引:1
Kodama D Nishimiya D Iwata K Yamaguchi K Yoshida K Kawabe Y Motono M Watanabe H Yamashita T Nishijima K Kamihira M Iijima S 《Biochemical and biophysical research communications》2008,367(4):834-839
The use of transgenic avian allows cost effective and safe production of pharmaceutical proteins. Here, we report the successful production of chimeric chickens expressing human erythropoietin (hEpo) using a high-titer retroviral vector. The hEpo expressed by transgenic hens accumulated abundantly in egg white and had N- and O-linked carbohydrates. While attachment of terminal sialic acid and galactose was incomplete, portions of N- and O-linked carbohydrates were present. In vitro biological activity of egg white-hEpo was comparable to that produced by recombinant CHO cells. 相似文献
2.
Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos 总被引:2,自引:0,他引:2
This study reports for the first time the production of chicken germline chimeras by transfer of embryonic germ (EG) cells into recipient embryos of different strain. EG cells were established by the subculture of gonadal tissue cells retrieved from stage 28 White Leghorn (WL) embryos with I/I gene. During primary culture (P(0)), gonadal primordial germ cells (gPGCs) in the stromal cells began to form colonies after 7 days in culture with significant (P < 0.0001) increase in cell population. Colonized gPGCs were then subcultured with chicken embryonic fibroblast monolayer for EG cell preparation. Prepared EG cells or gPGCs at P(0) were transferred to stage 17 Korean Ogol chicken (KOC) embryos with i/i gene. The recipient chickens were raised for 6 months to sexual maturity, then a testcross analysis by artificial insemination was conducted for evaluating germline chimerism. As results, transfer of EG cells and gPGCs yielded total 17 germline chimeras; 2 out of 15 (13.3%) and 15 of 176 sexually matured chickens (8.5%), respectively. The efficiency of germline transmission in the chimeras was 1.5-14.6% in EG cells, while 1.3-27.6% in gPGCs. In conclusion, chicken germline chimeras could be produced by the transfer of EG cells, as well as gPGCs, which might enormously contribute to establishing various innovative technologies in the field of avian transgenic research for bioreactor production. 相似文献
3.
Bodó S Gócza E Révay T Hiripi L Carstea B Kovács A Bodrogi L Bösze Z 《Molecular reproduction and development》2004,68(4):435-440
Here we report that improved reproductive technologies combined with an efficient microinjection method and in vitro cultivation medium enabled us to create germ line chimeric rabbits. To follow the fate of the chimeric embryo a blastomere marked with the human blood coagulation factor VIII (hFVIII) transgene was microinjected into a morula stage wild type embryo. The degree of chimerism in different tissues was estimated by real-time PCR and was found to be in the range of 0.1-42%. Among the four chimeric animals, one was identified as a chromosomal intersex and two were germline chimeras. 相似文献
4.
A previous report from our laboratory documented successful production of quail (Coturnix japonica) germline chimeras by transfer of gonadal primordial germ cells (gPGCs). Subsequently, this study was designed to evaluate whether gPGCs can be maintained in vitro for extended period, and furthermore, these cultured PGCs can induce germline transmission after transfer into recipient embryos. In experiment 1, gonadal cells from the two strains (wild-type plumage (WP) and black (D) quail) were cultured in vitro for 10 days. Using antibody QCR1, we detected a continuous, significant (P = 0.0002) increase in the number of WP, but not D, PGCs. QCR1-positive WP colonies began to form after 7 days in culture. On Day 10 of culture, 803 WP PGCs were present as a result of a continuous increase, whereas no D PGC colonies could be detected and the D gonadal stroma cells were rolled up. Differences in the PGCs or the gonadal stroma cells of the two different strains might account for these differences. In experiment 2, WP PGC colonies were maintained in vitro up to Day 20 of culture, and 10- or 20-day-cultured PGCs were microinjected into dorsal aortas of 181 recipient D embryos. Thirty-five (19.3%) of the transplanted embryos hatched after incubation, and 25 (71.4%) of the hatchlings reached sexual maturity. Testcrossing of the sexually mature hatchlings resulted in three (10 days, 33.3%) and eight (20 days, 50.0%) germline chimeras respectively. This report is the first to describe successful production of germline chimera by transfer of in vitro-cultured gPGCs in quail. 相似文献
5.
IL-KUK CHANG DONG KEE JEONG YEONG HO HONG TAE SUB PARK YANGHA KIM MOON TADAO OHNO JAE YONG HAN 《Cell biology international》1997,21(8):495-499
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens. 相似文献
6.
Hiroshi Kagami Takahiro Tagami Yuko Matsubara Takashi Harumi Hirofumi Hanada Kimiaki Maruyama Michiharu Sakurai Takashi Kuwana Mitsuru Naito 《Molecular reproduction and development》1997,48(4):501-510
A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal-Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida. Chimeric embryos produced by the male donor cells and the female recipient contained the female-derived cells at 97.2% in the whole embryo and 94.3% in the erythrocytes at 5 days of incubation. At 5–7 days of incubation, masculinization was observed in about one half of the mixed-sex embryos. The proportions of the female-derived cells in the whole embryo and in the erythrocytes were 76.5% and 80.2% at 7 days to 55.7% and 62.5% at 10 days of incubation, respectively. When the chimeras reached their sexual maturity, they were test mated to assess donor contribution to their germline. Five of six male chimeras (83%) and three of five female chimeras (60%) from male donor cells and a female recipient embryo from which 700 cells at the center of area pellucida were removed were germline chimeras. Three of the five male germline chimeras (60%) and one of the three female germline chimeras (33%) transmitted exclusively (100%) donor-derived gametes into the offspring. When embryonic cells were removed from the outer of area pellucida or area opaca, regardless of the sex combination of the donor and the recipient, the transmission of the donor-derived gametes was essentially null. The findings in the present studies demonstrated, both in vivo and in vitro, that the PGCs originate in the central part of the area pellucida and that the developmental fate to germ cell (PGCs) had been destined at stage X blastoderm in chickens. Mol. Reprod. Dev. 48:501–510, 1997. © 1997 Wiley-Liss, Inc. 相似文献
7.
Robert J. Etches Mary Ellen Clark Ann Toner Guodong Liu Ann M. Verrinder Gibbins 《Molecular reproduction and development》1996,45(3):291-298
Chicken blastodermal cells were cultured for 48 hr as explanted intact embryos, as dispersed cells in a monolayer, or with a confluent layer of mouse fibroblasts. The cells were then dispersed and injected into stage X (E-G&K) recipient embryos that were exposed to 600 rads of irradiation from a 60Co source. Regardless of the conditions in which the cells were cultured, chimeras with contributions to both somatic tissues and the germline were observed. When blastodermal cells were co-cultured with mouse embryonic fibroblasts, significantly more somatic chimeras were observed and the proportion of feather follicles derived from donor cells was increased relative to that observed following the injection of cells derived from explanted embryos or monolayer cultures. Culture of blastodermal cells in any of the systems, however, yielded fewer chimeras that exhibited reduced contributions to somatic tissues in comparison to the frequency and extent of somatic chimerism observed following injection of freshly prepared cells. Contributions to the germline were observed at an equal frequency regardless of the conditions of culture, but were significantly reduced in comparison to the frequency and rate of germ-line transmission following injection of cells obtained directly from stage X (E-G&K) embryos. These data demonstrate that some cells retain the ability to contribute to germline and somatic tissues after 48 hr in culture and that the ability to contribute to the somatic and germline lineages is not retained equally. © 1996 Wiley-Liss, Inc. 相似文献
8.
Sang Hyun Park Jin Nam Kim Tae Sub Park Tae Hyun Kim Jae Yong Han 《Theriogenology》2010,74(5):805-807
The use of genetically modified germ cells is an ideal system to induce transgenesis in birds; the primordial germ cell (PGC) is the most promising candidate for this system. In the present study, we confirmed the practical application of this system using lentivirus-transduced chicken gonadal PGCs (gPGCs). Embryonic gonads were collected from 5.5-d old Korean Oge chickens (black feathers). The gPGC population was enriched (magnetic-activated cell sorting technique) and then they were transduced with a lentiviral vector expressing enhanced green fluorescent protein (eGFP), under the control of the Rous sarcoma virus (RSV) promoter. Subsequently, the eGFP-transduced PGCs were transplanted into blood vessels of 2.5-d-old embryonic White Leghorn (white feathers). Among 21 germline chimeric chickens, one male produced transgenic offspring (G1 generation), as demonstrated by testcross and genetic analysis. A homozygous line was produced and maintained through the G3 generation. Based on serum biochemistry, there were no significant physiological differences between G3 homozygotes and non-transgenic chickens. However, since eGFP transgene expression in G3 chickens varied among tissues, it was further characterized by Western blotting and ELISA. Furthermore, there were indications that DNA methylation may have affected tissue-specific expression of transgenes in chickens. In conclusion, the PGC-mediated approach used may be an efficient tool for avian transgenesis, and transgenic chickens could provide a useful model for investigating regulation of gene expression. 相似文献
9.
H. Kagami M. E. Clark A. M. Verrinder Gibbins R. J. Etches 《Molecular reproduction and development》1995,42(4):379-387
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc. 相似文献
10.
Xylan is an abundant plant cell wall polysaccharide and its reduction to xylose units for subsequent biotechnological applications requires a combination of distinct hemicellulases and auxiliary enzymes, mainly endo-xylanases and ß-xylosidases. In the present work, a bifunctional enzyme consisting of a GH11 endo-1,4-β-xylanase fused to a GH43 β-xylosidase, both from Bacillus subtilis, was designed taking into account the quaternary arrangement and accessibility to the substrate. The parental enzymes and the resulting chimera were successfully expressed in Escherichia coli, purified and characterized. Interestingly, the substrate cleavage rate was altered by the molecular fusion improving at least 3-fold the xylose production using specific substrates as beechwood xylan and hemicelluloses from pretreated biomass. Moreover, the chimeric enzyme showed higher thermotolerance with a positive shift of the optimum temperature from 35 to 50 °C for xylosidase activity. This improvement in the thermal stability was also observed by circular dichroism unfolding studies, which seems to be related to a gain of stability of the β-xylosidase domain. These results demonstrate the superior functional and stability properties of the chimeric enzyme in comparison to individual parental domains, suggesting the molecular fusion as a promising strategy for enhancing enzyme cocktails aiming at lignocellulose hydrolysis. 相似文献
11.
Choi JW Lee EY Shin JH Zheng Y Cho BW Kim JK Kim H Han JY 《Journal of experimental zoology. Part A, Ecological genetics and physiology》2007,307(4):241-248
In the chicken, Dominant white is one of the major loci affecting feather color. Germline chimeric chickens are identified by testcross analysis using this genetic marker. The testcross, however, is a time-consuming and laborious procedure, resulting in the need for a faster and simpler molecular method. A recent study showed that Dominant white was exclusively associated with a 9-bp insertion in the PMEL17 gene. We searched for breed-specific sequence polymorphisms in the PMEL17 gene among White Leghorn (WL) (white feather), Korean Ogol Chicken (KOC) (black feather), and Barred Plymouth Rock (grayish-white, each feather regularly crossed with parallel blue-black bars). In addition to the 9-bp insertion, WLs and KOCs have unique bases in single nucleotide polymorphisms (SNPs) at the 1,777th and 3,118th bases in the PMEL17 gene. To detect these sequence polymorphisms, allele-specific polymerase chain reaction (AS-PCR) was performed, which successfully distinguished the different breeds. We confirmed the ability of the AS primers to detect germline chimerism. This simple method can be widely used for the screening of germline chimeric chickens. 相似文献
12.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans. 相似文献
13.
Kwon MS Koo BC Roh JY Kim M Kim JH Kim T 《Biochemical and biophysical research communications》2011,(4):890-894
There is much interest in using farm animals as ‘bioreactors’ to produce large quantities of biopharmaceuticals. However, uncontrolled constitutive expression of foreign genes have been known to cause serious physiological disturbances in transgenic animals. The objective of this study was to test the feasibility of the controllable expression of an exogenous gene in the chicken. A retrovirus vector was designed to express GFP (green fluorescent protein) and rtTA (reverse tetracycline-controlled transactivator) under the control of the tetracycline-inducible promoter and the PGK (phosphoglycerate kinase) promoter, respectively. G0 founder chickens were produced by infecting the blastoderm of freshly laid eggs with concentrated retrovirus vector. Feeding the chickens obtained with doxycycline, a tetracycline derivative, resulted in emission of green body color under fluorescent light, and no apparent significant physiological dysfunctions. Successful germline transmission of the exogenous gene was also confirmed. Expression of the GFP gene reverted to the pre-induction levels when doxycycline was removed from the diet. The results showed that a tetracycline-inducible expression system in transgenic animals might be a promising solution to minimize physiological disturbances caused by the transgene. 相似文献
14.
Germline chimeric chickens were produced by the transfer of primordial germ cells (PGCs) or blastoderm cells. The hatchability of eggs produced by transfer of exogenous PGCs is usually low. The purpose of the present study was investigated to express (3-hydroxyacyl CoA dehydrogenase) 3HADH which is a limiting enzyme in the beta-oxidation of fatty acids for hatching energy. Manipulations of both donor and recipient eggshells were as follows. A window approximately 10 mm in diameter was opened at the pointed end of the eggs at stage 12–15 days incubation. Donor PGCs, taken from the blood vessels of donor embryos from fertilized eggs at the same stage of development, were injected into the blood vessels of recipient embryos. The muscles of chicks in the eggs with transferred PGCs were removed after 20 days of incubation. A cDNA was prepared from the total RNA. The expression of 3HADH in the manipulated embryos was investigated using real-time PCR analysis. Real-time PCR analysis showed that expression of 3HADH was reduced in the muscles of manipulated embryos. 相似文献
15.
Aylwyn Scally 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1699)
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue ‘Dating species divergences using rocks and clocks''. 相似文献
16.
Tagami T Kagami H Matsubara Y Harumi T Naito M Takeda K Hanada H Nirasawa K 《Molecular reproduction and development》2007,74(1):68-75
In our previous studies, we demonstrated that female primordial germ cells (PGCs) have the ability to differentiate into W chromosome-bearing (W-bearing) spermatozoa in male gonads of germline chimeric chickens. In this study, to investigate the differentiation pattern of female PGCs in male gonads in chickens, three germline chimeric chickens were generated by injecting female PGCs into the male recipient embryos. After these male chimeras reached sexual maturity, the semen samples were analyzed for detecting W-bearing cells by PCR and in situ hybridization analyses. The results indicated that the female PGCs had settled and differentiated in their testes. A histological analysis of the seminiferous tubule in those chimeras demonstrated that the W-bearing spermatogonia, spermatocytes, and round spermatids accounted for 30.8%, 32.7%, and 28.4%, respectively. However, the W-bearing elongating spermatid was markedly lower (7.7%) as compared to the W-bearing round spermatid. The W-bearing spermatozoa were hardly ever observed (0.2%). We concluded that although female PGCs in male gonads are capable of passing through the first and second meiotic division in adapting themselves to a male environment, they are hardly complete spermiogenesis. 相似文献
17.
Production of human monoclonal antibody in eggs of chimeric chickens 总被引:11,自引:0,他引:11
Zhu L van de Lavoir MC Albanese J Beenhouwer DO Cardarelli PM Cuison S Deng DF Deshpande S Diamond JH Green L Halk EL Heyer BS Kay RM Kerchner A Leighton PA Mather CM Morrison SL Nikolov ZL Passmore DB Pradas-Monne A Preston BT Rangan VS Shi M Srinivasan M White SG Winters-Digiacinto P Wong S Zhou W Etches RJ 《Nature biotechnology》2005,23(9):1159-1169
The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization. 相似文献
18.
Bovine embryos produced by in vitro maturation (IVM), fertilization (IVF) and culture (IVC) were used to produce aggregation chimeras. An aggregated chimera was produced by combining bovine IVF embryos (Holstein × Japanese Black and Japanese Brown × Limousin breeds) which were cultured in vitro without the zonae pellucidae. Forty-eight hours after IVF, embryos at the 8 cell-stage were used to produce aggregation chimeras. In Experiment I, the zonae pellucidae was removed by a microsurgical method using a microblade or by treatment with 0.25% pronase. Holstein × Japanese Black embryos were aggregated with Japanese Brown × Limousin embryos after zonae removal by hand manipulation in culture medium. In Experiment II, the viability of the aggregated embryos developing into blastocysts was examined by measuring the extent of development. The number of aggregated embryos and embryos developed into blastocysts was 34 (91.9%) and 24 (70.6%), respectively, when the zonae pellucidae was removed by the microsurgical method; and 12 (92.3%) and 6 (50.0%), respectively, when the zonae pellucidae was removed using the 0.25% pronase treatment. The size of the aggregated embryos was significantly different from that of the normal embryos when cultured in vitro until Day 10, but not different thereafter. Five aggregated embryos were transferred nonsurgically to the recipients, resulting in 1 pregnancy and the birth of 2 chimeric calves. Skin color was used as evidence of chimerism. 相似文献
19.
Kobayashi T Takeuchi Y Takeuchi T Yoshizaki G 《Molecular reproduction and development》2007,74(2):207-213
An increasing number of wild fish species are in danger of extinction, often as a result of human activities. The cryopreservation of gametes and embryos has great potential for maintaining and restoring threatened species. The conservation of both paternal and maternal genetic information is essential. However, although this technique has been successfully applied to the spermatozoa of many fish species, reliable methods are lacking for the long-term preservation of fish eggs and embryos. Here, we describe a protocol for use with rainbow trout (Oncorhynchus mykiss) primordial germ cells (PGCs) and document the restoration of live fish from gametes derived from these cryopreserved progenitors. Genital ridges (GRs), which are embryonic tissues containing PGCs, were successfully cryopreserved in a medium containing 1.8 M ethylene glycol (EG). The thawed PGCs that were transplanted into the peritoneal cavities of allogenic trout hatchlings differentiated into mature spermatozoa and eggs in the recipient gonads. Furthermore, the fertilization of eggs derived from cryopreserved PGCs by cryopreserved spermatozoa resulted in the development of fertile F1 fish. This PGC cryopreservation technique represents a promising tool in efforts to save threatened fish species. Moreover, this approach has significant potential for maintaining domesticated fish strains carrying commercially valuable traits for aquaculture purposes. 相似文献
20.
Kagami H Iwata J Yasuda J Ono T 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2002,131(2):287-292
To elucidate the strain preference in donor and recipient for the production of W-bearing sperm, mixed-sex germline chimeric chickens were produced. The combination of donor and recipient was White Leghorn (WL) and Barred Plymouth Rock (BPR), and vice versa. Four sets of mixed-sex chimeras that had the male phenotype at sexual maturity were subjected to analysis: group 1, a female WL donor and a male BPR recipient; group 2, a male WL donor and a female BPR recipient; group 3, a female BPR donor and a male WL recipient; group 4, a male BPR donor and a female WL recipient. The mean number of W-bearing sperm detected by in situ hybridization among 10000 sperm observed was 135, 158, 26 and 71 in groups 1, 2, 3 and 4, respectively. The number in group 1 was significantly higher than that of group 3 (P<0.05). And the number in group 2 was significantly higher than those of groups 3 and 4 (P<0.05). It is suggested that the combination of a WL donor and a BPR recipient produced W-bearing sperm more efficiently than the reverse combination. 相似文献