首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. Spectrophotometric analysis of intact cells of Schizosaccharomyces pombe, harvested from exponentially growing cultures during the phase of glucose repression, revealed the presence of cytochromes a+a(3), c and at least two species of cytochrome b. 2. An absorption maximum at 554nm at 77 degrees K, previously attributed to cytochrome c(1), has been identified as a b-type cytochrome. 3. CO-difference spectra reveal the presence of cytochromes P-420 and P-450 in addition to cytochrome a(3). 4. The cell cycle was analysed by separation of cells into classes representing successive stages in the cell cycle by isopycnic zonal centrifugation. 5. Cytochromes c(548), b(554) and b(560) each exhibited a single broad maximum of synthesis during the cell cycle. 6. Amounts of cytochromes a+a(3) and b(563) (tentatively identified as cytochrome b(T) by its reaction on pulsing anaerobic cell suspensions with O(2)) oscillated in phase, and showed two maxima during the cycle; the second maximum of cytochromes a+a(3) was coincident with a maximum of activity of enzymically active cytochrome c oxidase. 7. The amount of cytochrome P-420 decreased during the first three-quarters of the cell-cycle, whereas that of cytochrome P-450 increased during this period. 8. The discrepancy between spectrophotometric and enzymic assay of cytochrome c oxidase, the changing ratio of cytochrome a(3)/cytochrome a and the relationship between changes in cellular content of cytochromes and previous observations on respiratory oscillations during the cell cycle are discussed.  相似文献   

3.
Cytoplasmic membranes were isolated from the cells of a sulfate-reducing strict anaerobe Desulfovibrio vulgaris Miyazaki F and membrane-bound cytochromes were characterized. Redox difference spectra at 77 K revealed the presence of cytochromes with the alpha peaks at 552 and 556 nm while CO-binding difference spectra showed the presence of o-type cytochrome(s). Partial purification of the cytochromes demonstrated that the membranes contain cytochromes c550, c551, c556 and possibly d1 besides high molecular mass cytochrome c and cytochrome c3. It turned out that two kinds of novel CO-binding c-type cytochromes are present in the membrane. The membranes and a partially purified fraction showed weak ubiquinol-1 oxidase activity but no cytochrome c oxidase activity. Results suggest that D. vulgaris does not express the heme-copper terminal oxidase under our growth conditions in spite of the presence of the col gene, which is homologous to the gene of subunit I of the aa3-type oxidase.  相似文献   

4.
Günter A. Peschek 《BBA》1981,635(3):470-475
The cytochrome content of membrane fragments prepared from the bluegreen alga (cyanobacterium) Anacystis nidulans was examined by difference spectrophotometry. Two b-type cytochromes and a hitherto unknown cytochrome a could be characterized. In the reduced-minus-oxidised difference spectra the a-type cytochrome showed an α-band at 605 nm and a γ-band at 445 nm. These bands shifted to 590 and 430 nm, respectively, in CO difference spectra. NADPH, NADH and ascorbate reduced the cytochrome through added horse heart cytochrome c as electron mediator. In presence of KCN the reduced-minus-oxidised spectrum showed a peak at 600 nm and a trough at 604 nm. Photoaction spectra of O2 uptake and of horse heart cytochrome c oxidation by CO-inhibited membranes showed peaks at 590 and 430 nm. These findings are consistent with cytochrome aa3 being the predominant respiratory cytochrome c oxidase in Anacystis nidulans.  相似文献   

5.
Orientations of the active site chromophores of the mitochondrial redox carriers have been investigated in hydrated, oriented multilayers of mitochondrial membranes using optical and EPR spectroscopy. The hemes of cytochrome c oxidase, cytochrome c1, and cytochromes b were found to be oriented in a similar manner, with the normal to their heme planes lying approximately in the plane of the mitochondrial membrane. The heme of cytochrome c was either less oriented in general or was oriented at an angle closer to the plane of the mitochondrial membrane than were the hemes of the "tightly bound" mitochondrial cytochromes. EPR spectra of the azide, sulfide and formate complexes of cytochrome c oxidase in mitochondria in situ obtained as a function of the orientation of the applied magnetic field relative to the planes of the membrane multilayers showed that both hemes of the oxidase were oriented in such a way that the angle between the heme normal and the membrane normal was approx. 90 degrees.  相似文献   

6.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied. 2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the alpha peaks of b-type cytochrome (s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two alpha peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochdrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm. 3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.  相似文献   

7.
Experiments employing electron transport inhibitors, room- and low-temperature spectroscopy, and photochemical action spectra have led to a model for the respiratory chain of Pseudomonas carboxydovorans. The chain is branched at the level of b-type cytochromes or ubiquinone. One branch (heterotrophic branch) contained cytochromes b558, c, and a1; the second branch (autotrophic branch) allowed growth in the presence of CO and contained cytochromes b561 and o (b563). Electrons from the oxidation of organic substrates were predominantly channelled into the heterotrophic branch, whereas electrons derived from the oxidation of CO or H2 could use both branches. Tetramethyl-p-phenylenediamine was oxidized via cytochromes c and a exclusively. The heterotrophic branch was sensitive to antimycin A, CO, and micromolar concentrations of cyanide. The autotrophic branch was sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide, insensitive to CO, and inhibited only by millimolar concentrations of cyanide. The functioning of cytochrome a1 as a terminal oxidase was established by photochemical action spectra. Reoxidation experiments established the functioning of cytochrome o as an alternative CO-insensitive terminal oxidase of the autotrophic branch.  相似文献   

8.
The enzymatic activities and the cytochrome components of the respiratory chain were investigated with membrane fractions from chemoheterotrophically growth Rhodopseudomonas palustris. Whereas the level of electron transfer carriers was not distinctly affected by a change of the culture conditions, the potential activities of the enzymes were clearly increased when the cells were grown aerobically. Reduced-minus oxidized difference spectra of the membrane fractions prepared from dark aerobically grown cells revealed the presence of three beta-types cytochromes b561, b560 and b558, and at least two c-type cytochromes c556 and c2 as electron carriers in the electron transfer chain. Cytochrome of a-type could not be detected in these membranes. Reduced plus CO minus reduced difference spectra of the membrane fractions were indicative of cytochrome o, which may be equivalent to cytochrome b560, appearing in substrate-reduced minus oxidized difference spectra. Cytochrome o was found to be the functional terminal oxidase. CO difference spectra of the high speed supernatant fraction indicated the presence of cytochrome c'. Succinate and NADH reduced the same types of cytochromes. However, a considerable amount of cytochrome b561 with associated beta and gamma bands at 531 and 429 nm, respectively, was reducible by succinate, but not by NADH. A substantial fraction of the membrane-bound b-type cytochrome was non-substrate reducible and was found in dithionite-reduced minus substrate-reduced spectra. Cytochrome c2 may be localized in a branch of the electron transport system, with the branch-point at the level of ubiquinone. The separate pathways rejoined at a common terminal oxidase. Two terminal oxidases with different KCN sensitivity were present in the respiratory chain, one of which was sensitive to low concentrations of KCN and was connected with the cytochrome chain. The other terminal oxidase which was inhibited only by high concentrations of cyanide was located in a branched pathway, through which the electrons could flow from ubiquinone to oxygen bypassing the cytochrome chain.  相似文献   

9.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

10.
Illumination of chromatophore preparations from Rhodopseudomonas spheroides causes the oxidation of a cytochrome c and a slight oxidation of a cytochrome b with a maximum at 560nm. When illuminated in the presence of antimycin A the oxidation of cytochrome c was more pronounced and cytochrome b(560) was reduced; the dark oxidation of cytochrome b(560) was biphasic in the presence of succinate, but not in the presence of NADH, a less effective reductant. Split-beam spectroscopy showed that, in addition to the reduction of cytochrome b(560), another pigment with maxima at 565 and 537nm. was reduced and was more rapidly oxidized in the dark than cytochrome b(560). This pigment, tentatively identified as cytochrome b(565), was also detected in spectra at 77 degrees k, after brief illumination at room temperature; the maxima at 77 degrees k were at 562 and 536nm. In the absence of antimycin A, light caused a transient reduction of cytochrome b(565) and an oxidation of cytochrome b(560). Dark oxidation of b(565) was rapid, even in the presence of antimycin A and succinate. Difference spectra, at 77 degrees k, of ascorbate-reduced minus succinate-reduced chromatophores or of anaerobic succinate-reduced minus aerobic succinate-reduced chromatophores suggested that two cytochromes c were present, with maxima at 547 and 549nm. When chromatophores frozen at 77 degrees k were illuminated both these cytochromes c were oxidized, indicating a close association with the photochemical reaction centre. A scheme involving two reaction centres is proposed to explain these results.  相似文献   

11.
The cell membrane-associated respiratory electron transport chain of Neisseria gonorrhoeae was examined using electron paramagnetic spectroscopy (EPR) at liquid helium temperatures and optical spectroscopy at liquid nitrogen and room temperatures. EPR spectra of dithionite-reduced particles indicated the presence of centers N-1 and N-3 in the site I region of the respiratory chain, whereas reduction with succinate revealed the existence of center S-1 from the succinate cytochrome c reductase segment. Free radical(s) resembling that due to falvin semiquinone were observed with both reductants. Low temperature (77 K) optical difference spectra indicated the presence of cytochromes with alpha band maxima at 549, 557, and 562. Bands at 567, 535, and 417 nm, characteristic of the CO compound of cytochrome o, were also identified. Cytochromes a1 and a3 were not detected; however, a broad but weak absorbance with an alpha band maximun at 600 nm and a Soret shoulder at 440 nm was observed. Hence the respiratory chain of N. gonorrhoeae appears to contain several nonheme iron centers, cytochrome c, two b cytochromes, with cytochrome o which probably serves as the terminal oxidase.  相似文献   

12.
The liganded derivatives of mitochondrial cytochrome c oxidase have been prepared in hydrated oriented multilayers of membranous cytochrome c oxidase. The optical spectra of the liganded derivatives recorded at an angle of 45 degrees between the incident light beam and the normal to the planes of the membranes in the multilayers show dichroic ratios of almost 2 in the visible region and 1.2-1.4 in the Soret region. The dichroic ratios were found to be similar for both cytochromes a and a3. Electron paramagnetic resonance spectra of the azide, sulfide, and formate complexes of cytochrome c oxidase obtained as a function of the orientation of the applied magnetic field relative to the planes of the membranes in the multilayer confirm the optical data and demonstrate that both hemes of cytochrome c oxidase are oriented such that the angle between the heme normal and the membrane normal is approximately 90 degrees.  相似文献   

13.
Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.  相似文献   

14.
The iron-oxidizing activity of a moderately thermophilic iron-oxidizing bacterium, strain TI-1, was located in the plasma membrane. When the strain was grown in Fe2+ (60 mM)-salts medium containing yeast extract (0.03%), the plasma membrane had iron-oxidizing activity of 0.129 mumol O2 uptake/mg/min. Iron oxidase was solubilized from the plasma membrane with 1.0% n-octyl-beta-D-glucopyranoside (OGL) containing 25% (v/v) glycerol (pH 3.0) and purified 37-fold by a SP Sepharose FF column chromatography. Iron oxidase solubilized from the plasma membrane was stable at pH 3.0, but quite unstable in the buffer with the pH above 6.0 or below 1.0. The optimum pH and temperature for iron oxidation were 3.0 and 55 degrees C, respectively. Solubilized enzyme from the membrane showed absorption peaks characteristic of cytochromes a and b. Cyanide and azide, inhibitors of cytochrome c oxidase, completely inhibited iron-oxidizing activity at 100 microM, but antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) and myxothiazol, inhibitors of electron transport systems involved with cytochrome b, did not inhibit enzyme activity at 10 microM. The absorption spectrum of the most active enzyme fraction from SP Sepharose FF column chromatography (4.76 mumol O2 uptake/mg/min) compared with lower active fractions from the chromatography (0.009 and 2.10 mumol O2 uptake/mg/min) showed a large alpha-peak of cytochrome a at 602 nm and a smaller alpha-peak of cytochrome b at 560 nm. The absorption spectrum of pyridine ferrohemochrome prepared from the most highly purified enzyme showed an alpha-peak characteristic of heme a at 587 nm, but not the alpha-peak characteristic of heme c at 550 nm. The cytochrome a, but not cytochrome b, in the most highly purified enzyme fraction was reduced by the addition of ferrous iron at pH 3.0, indicating that electrons from Fe2+ were transported to cytochrome a, but not cytochrome b. These results strongly suggest that cytochrome a, but not cytochromes b and c, is involved in iron oxidation of strain TI-1.  相似文献   

15.
Cytochrome spectrum of an obligate anaerobe, Eubacterium lentum.   总被引:8,自引:2,他引:6       下载免费PDF全文
An obligately anaerobic bacterium, Eubacterium lentum, was shown to contain cytochromes a, b, and c and a carbon monoxide-binding pigment. Extracts of cells grown with hemin gave a typical absorption spectrum for cytochrome c with maxima at 424, 525, and 553 nm. Extracts from cells grown in the absence of hemin also had an absorption peak corresponding to cytochrome b (562 nm) in their reduced versus oxidized spectrum. Extraction of hemes and formation of pyridine hemochromes allowed quantitation of protoheme IX and heme c. Large amounts of cytochrome c masked the presence of cytochrome b in cells grown in medium containing hemin. When cells were grown in the presence of 50 mM nitrate, cytochrome A (606 nm) was detected. In anaerobic extracts of cells grown either with or without nitrate, cytochromes b and c were reduced by formate and oxidized by NO3. Cytochrome a appeared to be partially oxidized by NO3 and completely oxidized by air.  相似文献   

16.
The electron transport system of Neisseria gonorrhoeae was partially characterized by using spectrophotometric, spectroscopic, and oxygen consumption measurements. The effects of selected electron transport inhibitors (amytal, rotenone, 2-heptyl-4-hydroxyquinoline, antimycin A1, and potassium cyanide [KCN]) on electron transfer in whole-cell and sonically treated whole-cell preparations of N. gonorrhoeae were examined. The oxidation of reduced nicotinamide adenine dinucleotide, measured as a decrease in absorbance at 340 nm, was inhibited by each of the compounds tested. Oxygen consumption stimulated by reduced nicotinamide adenine dinucleotide was also inhibited, whereas oxygen uptake stimulated by succinate and malate was inhibited by KCN alone, suggesting the presence of a KCN-sensitive terminal oxidase. Room temperature optical difference spectra indicate an operational electron bypass around the amytal-rotenone-binding site. Difference spectra in the presence of 2-heptyl-4-hydroxyquinoline suggest a possible site of interaction of this compound at the substrate side of cytochrome b. Reduced-minus-oxidized spectra of ascorbate-tetramethyl-p-phenylenediamine suggest the participation of b-, a-, and d-type cytochromes in terminal oxidase activity. Hence, N. gonorrhoeae appears to have an electron transport chain containing cytochrome c, two b-type cytochromes (one of which has an oxidase function), and possibly a- and d-type cytochromes. An abbreviated chain exists through which succinate and malate can be oxidized directly by a KCN-sensitive component.  相似文献   

17.
The 'pure' difference spectra of the three species, IM, IIM and IIIM, formed in the low-temperature reaction of membrane-bound mixed-valence-state cytochrome oxidase with O2 relative to unliganded membrane-bound mixed-valence-state cytochrome oxidase were characterized by optical spectroscopy in the visible region. The difference spectrum of species IM was characterized by a peak at 590 nm and a trough at 608 nm, that of species IIM by a peak at 606 nm, and that of species IIIM by a peak at 610 nm. A comparison with the difference spectra of species IIM and IIIM obtained with soluble cytochrome oxidase [Clore, Andréasson, Karlsson, Aasa & Malmström (1980) Biochem. J. 185, 155-167] revealed small but significant differences in the peak positions and bandwidths of the 605-610 nm absorption band.  相似文献   

18.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E'0 at pH 7.0 +413+/-5, +270+/-5, +148+/-5, +56+/-5 and -32+/-5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b-32) vary as a function of pH with a slope of 30 mV per pH unit. 2. In the presence of a CO/N2 mixture, the apparent E'0 of cytochrome b270 shifts markedly towards higher potentials (+355mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain. 3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc'. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc' are involved in this pathway. 4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in C0-difference spectra and with an alpha band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome "0" and considered the alternative CO-sensitive oxidase.  相似文献   

19.
Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli.  相似文献   

20.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号