首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yeast extract and Venturia inaequalis treated intact scab-susceptible (McIntosh) and scab-resistant (Liberty) apple plants and their organs were analyzed for phenolic metabolites. The major phenolic compounds found in both non-treated and treated leaves were phloridzin and phloretin which accumulated in mM concentrations. Untreated and treated stems and roots contained only phloridzin as the major detectable metabolite during the course of the investigation. The accumulation of phloridzin and phloretin was not developmentally regulated, since they were present in both young and old leaves, and also in the intercellular washings of both scab-susceptible and scab-resistant plants. The major metabolites of both McIntosh and Liberty fruits were cinnamyl glucose and p-coumarylquinic acid, which increased 20-fold in Liberty fruit upon yeast extract treatment. The same compounds increased only 2-fold in McIntosh fruits. Minor compounds in the fruits of both cultivars were p-coumaric acid, phloridzin and phloretin, the latter compound being present at the threshold of detection. Biphenyl and dibenzofuran compounds, the major metabolites of elicitor treated Liberty cell suspension cultures, could not be detected in the intact plants. These results indicate differential response of plant organs and cell suspension cultures to elicitor treatment or pathogen invasion.  相似文献   

2.
Levels of indolic and phenylpropanoid secondary metabolites in Arabidopsis (Arabidopsis thaliana) leaves undergo rapid and drastic changes during pathogen defense, yet little is known about this process in roots. Using Arabidopsis wild-type and mutant root cultures as an experimental system, and the root-pathogenic oomycete, Pythium sylvaticum, for infections, we analyzed the aromatic metabolite profiles in soluble extracts from uninfected and infected roots, as well as from the surrounding medium. A total of 16 indolic, one heterocyclic, and three phenylpropanoid compounds were structurally identified by mass spectrometry and nuclear magnetic resonance analyses. Most of the indolics increased strongly upon infection, whereas the three phenylpropanoids decreased. Concomitant increases in both indolic and phenylpropanoid biosynthetic mRNAs suggested that phenylpropanoids other than those examined here in "soluble extracts" were coinduced with the indolics. These and previous results indicate that roots differ greatly from leaves with regard to the nature and relative abundance of all major soluble phenylpropanoid constituents. For indolics, by contrast, our data reveal far-reaching similarities between roots and leaves and, beyond this comparative aspect, provide an insight into this highly diversified yet under-explored metabolic realm. The data point to metabolic interconnections among the compounds identified and suggest a partial revision of the previously proposed camalexin pathway.  相似文献   

3.
Pedras MS  Hossain S 《Phytochemistry》2011,72(18):2308-2316
Glucosinolates represent a large group of plant natural products long known for diverse and fascinating physiological functions and activities. Despite the relevance and huge interest on the roles of indole glucosinolates in plant defense, little is known about their direct interaction with microbial plant pathogens. Toward this end, the metabolism of indolyl glucosinolates, their corresponding desulfo-derivatives, and derived metabolites, by three fungal species pathogenic on crucifers was investigated. While glucobrassicin, 1-methoxyglucobrassicin, 4-methoxyglucobrassicin were not metabolized by the pathogenic fungi Alternaria brassicicola, Rhizoctonia solani and Sclerotinia sclerotiorum, the corresponding desulfo-derivatives were metabolized to indolyl-3-acetonitrile, caulilexin C (1-methoxyindolyl-3-acetonitrile) and arvelexin (4-methoxyindolyl-3-acetonitrile) by R. solani and S. sclerotiorum, but not by A. brassicicola. That is, desulfo-glucosinolates were metabolized by two non-host-selective pathogens, but not by a host-selective. Indolyl-3-acetonitrile, caulilexin C and arvelexin were metabolized to the corresponding indole-3-carboxylic acids. Indolyl-3-acetonitriles displayed higher inhibitory activity than indole desulfo-glucosinolates. Indolyl-3-methanol displayed antifungal activity and was metabolized by A. brassicicola and R. solani to the less antifungal compounds indole-3-carboxaldehyde and indole-3-carboxylic acid. Diindolyl-3-methane was strongly antifungal and stable in fungal cultures, but ascorbigen was not stable in solution and displayed low antifungal activity; neither compound appeared to be metabolized by any of the three fungal species. The cell-free extracts of mycelia of A. brassicicola displayed low myrosinase activity using glucobrassicin as substrate, but myrosinase activity was not detectable in mycelia of either R. solani or S. sclerotiorum.  相似文献   

4.
Primary or secondary? Versatile nitrilases in plant metabolism   总被引:1,自引:0,他引:1  
Piotrowski M 《Phytochemistry》2008,69(15):2655-2667
The potential of plant nitrilases to convert indole-3-acetonitrile into the plant growth hormone indole-3-acetic acid has earned them the interim title of "key enzyme in auxin biosynthesis". Although not widely recognized, this view has changed considerably in the last few years. Recent work on plant nitrilases has shown them to be involved in the process of cyanide detoxification, in the catabolism of cyanogenic glycosides and presumably in the catabolism of glucosinolates. All plants possess at least one nitrilase that is homologous to the nitrilase 4 isoform of Arabidopsis thaliana. The general function of these nitrilases lies in the process of cyanide detoxification, in which they convert the intermediate detoxification product beta-cyanoalanine into asparagine, aspartic acid and ammonia. Cyanide is a metabolic by-product in biosynthesis of the plant hormone ethylene, but it may also be released from cyanogenic glycosides, which are present in a large number of plants. In Sorghum bicolor, an additional nitrilase isoform has been identified, which can directly use a catabolic intermediate of the cyanogenic glycoside dhurrin, thus enabling the plant to metabolize its cyanogenic glycoside without releasing cyanide. In the Brassicaceae, a family of nitrilases has evolved, the members of which are able to hydrolyze catabolic products of glucosinolates, the predominant secondary metabolites of these plants. Thus, the general theme of nitrilase function in plants is detoxification and nitrogen recycling, since the valuable nitrogen of the nitrile group is recovered in the useful metabolites asparagine or ammonia. Taken together, a picture emerges in which plant nitrilases have versatile functions in plant metabolism, whereas their importance for auxin biosynthesis seems to be minor.  相似文献   

5.
Profiling of metabolites is a rapidly expanding area of research for resolving metabolic pathways. Metabolic fingerprinting in medicinally important plants is critical to establishing the quality of herbal medicines. In the present study, metabolic profiling of crude extracts of leaf and root of Withania somnifera (Ashwagandha), an important medicinal plant of Indian system of medicine (ISM) was carried out using NMR and chromatographic (HPLC and GC-MS) techniques. A total of 62 major and minor primary and secondary metabolites from leaves and 48 from roots were unambiguously identified. Twenty-nine of these were common to the two tissues. These included fatty acids, organic acids, amino acids, sugars and sterol based compounds. Eleven bioactive sterol-lactone molecules were also identified. Twenty-seven of the identified metabolites were quantified. Highly significant qualitative and quantitative differences were noticed between the leaf and root tissues, particularly with respect to the secondary metabolites.  相似文献   

6.
为提高黑老虎(Kadsura coccinea)资源的综合利用率,采用广泛靶向代谢组学技术鉴定并分析了根、茎、叶代谢组分差异及高度富集成分。结果表明,在根、茎和叶中分别鉴定出642、650和619个代谢物,以酚酸、脂质、类黄酮和有机酸为主;叶与根、茎与根的共有成分分别为566和650个,显著差异成分有442和393个,主要为酚酸、类黄酮和脂质,差异代谢物在苯丙烷生物合成、黄酮与黄酮醇生物合成通路中显著富集。代谢物总丰度和次生代谢物丰度均表现为叶>根>茎,叶中酚酸、类黄酮和脂质及茎中酚酸积累量显著高于根,而氨基酸及其衍生物、萜类、木脂素、香豆素、生物碱的丰度在根中显著上调。因此,黑老虎根、茎、叶有大量共有成分,叶和茎中酚酸、叶中类黄酮和脂质高度富集,含有新绿原酸、绿原酸、槲皮素等多个丰度较高且具有重要生物活性化合物,具有较高利用价值。  相似文献   

7.
The accumulation of conjugates of indole-3-acetic acid (IAA) in Arabidopsis thaliana was studied by incubating tissues with high concentrations of exogenous IAA, followed by reverse phase HPLC analysis of the extracts. Using fluorescence detection, indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose were observed and quantitated in extracts of tissue after 24 h incubation with 500 μ M IAA. In addition, a new metabolite was detected and positively identified as indole-3-acetyl-glutamine by fast atom bombardment mass spectrometry, exact mass measurement, and tandem mass spectrometry in comparison with a synthetic standard. The amounts of individual conjugates formed differed between leaves, shoot axes and roots. In all three tissues, indole-3-acetyl-aspartate was the most abundant conjugate, the highest level being observed in roots. Highest levels of indole-3-acetyl-glutamine were observed in leaves, where it was the second most abundant conjugate and comprised approximately 12% of the fluorescent metabolites. Accumulation of the three amide conjugates was dramatically inhibited by cycloheximide, whereas accumulation of indole-3-acetyl-glucose was little affected. Based on these data, a screen for Arabidopsis mutants altered in the IAA-inducible system for auxin conjugate formation was initiated. The first mutant to be isolated and characterized produces more indole-3-acetyl-glutamine and less indole-3-acetyl-aspartate than wild-type, and is allelic to an existing class of photorespiration mutants ( gluS ) deficient in chloroplastic glutamate synthase.  相似文献   

8.
Chen H  Jiang H  Morgan JA 《Phytochemistry》2007,68(3):306-311
Cinnamate 4-hydroxylase (C4H), a monooxygenase in the plant phenylpropanoid pathway, was assayed for its ability to hydroxylate 29 substrate analogues. Nine of the tested analogues with various aromatic side chains, including 3-coumaric acid, were metabolized by C4H. Seven products from these reactive analogues were characterized using LC/MS, 1H NMR and 13C NMR spectroscopic analysis. For example, caffeic acid was the product of 3-coumaric acid. The products 4-hydroxy-2-chlorocinnamic acid and 4-hydroxy-2-ethoxycinnamic acid are novel compounds that have not been previously reported. The kinetic parameters of C4H towards these analogues were determined.  相似文献   

9.
The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after methyl jasmonate treatment, hydroxycinnamates and glucosinolate were highly increased. Methyl jasmonate treatment resulted in a long-term accumulation of indole glucosinolate and indole-3-acetic acid, lasting up to 14 days after treatment. Malate conjugated hydroxycinnamates also exhibited an increase until 14 days after methyl jasmonate treatment, these compounds might play an important role in plant defence responses mediated by methyl jasmonate.  相似文献   

10.
Two nitrile glucosides (1S,3S,4S,5R)-4-benzoyloxy-2-cyanomethylene-3,5-dihydroxycyclohexyl-1-O-beta-glucopyranoside (campyloside A) and (1S,3S,4S,5R)-5-benzoyloxy-2-cyanomethylene-3-hydroxy-4-(2-pyrrolcarboxyloxy)cyclohexyl-1-O-beta-glucopyranoside (campyloside B) were isolated from the stem roots of Campylospermum glaucum, whereas serotobenine was isolated from Ouratea turnarea. The structure elucidations were based on spectroscopic evidence. The biological assays of compounds and crude extract of plant species showed good antimicrobial activity of crude extracts against Gram-positive cocci.  相似文献   

11.
Chromatographic separation of the CH2Cl2 extract from leaves of Peperomia serpens yielded two chromenes [5-hydroxy-8-(3',7'-dimethylocta-2',6'-dienyl)-2,2,7-trimethyl-2H-1-chromene (1) and 5-hydroxy-8-(3'-methyl-2'-butenyl)-2,2,7-trimethyl-2H-1-chromene-6-carboxylic acid (2)], besides the known chromene [methyl 5-hydroxy-2,2,7-trimethyl-2H-1-chromene-6-carboxylate (3)] and the flavonoid, dihydrooroxylin (4). Their structural elucidation were achieved by spectroscopic analyses. The antifungal activities of the CH2Cl2 extract and the isolated chromenes were measured bioautographically against Cladosporium cladosporioides and C. sphaerospermum, when it was found that the crude extract showed higher activity as compared to the pure compounds.  相似文献   

12.
An extract of leaves and stems of Peperomia villipetiola has been found to contain myristicin (3-methoxy-4,5-methylenedioxy-allylbenzene) and seven chromenes, whose structures are methyl 5-hydroxy-7-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (1), methyl 5-methoxy-7-methyl-2,2-dimethyl-2H-1-chromene-8-carboxylate (2), methyl 7-hydroxy-5-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (3), methyl 7-methoxy-5-methyl-2,2-dimethyl-2H-1-chromene-6-carboxylate (4), 5-methanol-7-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylic acid (5), 5-methanol-7-methoxy-2,2-dimethyl-2H-1-chromene-6-carboxylic acid (6), and methyl 5-acetoxymethanol-7-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylate (7). A biosynthetic rationale for 1-7 suggests that orsellinic acid may be a common intermediate. The anti-fungal activities of the chromenes were measured bioautographically against Cladosporium cladosporioides and Cladosporium sphaerospermum: compounds 6 and 7 were found to be the most active.  相似文献   

13.
A general gas chromatography/mass spectrometry (MS)-based screen was performed to identify catabolites and conjugates of indole-3-acetic acid (IAA) during vegetative growth of Arabidopsis. This experiment revealed the existence of two new conjugates: N-(indole-3-acetyl)-alfa-alanine (IA-Ala) and N-(indole-3-acetyl)-alfa-leucine (IA-Leu). A method for quantitative analysis of IAA metabolites in plant extracts by liquid chromatography-electrospray tandem MS has been developed. The accuracy and precision of the new method are better than 10% for standards close to the detection limit, and are between 6% and 16% for the entire protocol applied to plant extracts. The low detection limits, 0.02 to 0.1 pmol for the different metabolites, made it possible to use as little as 50 to 100 mg of tissue for quantitative analysis. The analysis was performed on different tissues of an Arabidopsis plant at two stages of development, using heavy labeled internal standards of the catabolite 2-oxoindole-3-acetic acid as well as IAA conjugated to amino acids: aspartate, glutamate, Ala, and Leu. Expanding leaves and roots that generally contain high amounts of the free hormone also contained the highest levels of IA-aspartate, IA-glutamate, and 2-oxoindole-3-acetic acid, supporting their role as irreversible catabolic products. The levels of IA-Leu and IA-Ala did not follow the general distribution of IAA. Interestingly, the level of IA-Leu was highest in roots and IA-Ala in the aerial tissues.  相似文献   

14.
Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH). Upon enzymatic treatment, XGA oligosaccharides were primarily produced from pectin extracts obtained from the young and mature leaves and to a lesser extent from those originating from the stem of A. thaliana. The oligosaccharide GalA(3)Xyl was predominantly formed from these pectin extracts. No XGA oligosaccharides were detected in digests of pectin extracts from the seeds and roots. A low number of XGA oligosaccharides was obtained from pectins of A. thaliana. This indicates a uniform distribution of xylose in XGA from A. thaliana. The predominant production of GalA(3)Xyl, as well as the release of linear GalA oligosaccharides pointed to a lower degree of xylose substitution in XGA from A. thaliana than in XGA from apple and potato. The estimated amount of XGA accounted for approximately 2.5%, 7% and 6% (w/w) of the total carbohydrate in the pectin fraction of the stem, young leaves and mature leaves, respectively.  相似文献   

15.
Liquid phase extraction (LPE) and vapor phase extraction (VPE) methodologies were used to evaluate the impact of the plant activator, cis-jasmone, on the secondary metabolism of wheat, Triticum aestivum, var. Solstice. LPE allowed the measurement of benzoxazinoids, i.e. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA), and phenolic acids such as trans-p-coumaric acid, syringic acid, p-hydroxybenzoic acid, vanillic acid and cis- and trans-ferulic acid. Using LPE, a significantly higher level of DIMBOA was found in aerial parts and roots of T. aestivum following treatment with cis-jasmone, when compared with untreated plants. Similar results were obtained for phenolic acids, such as trans-ferulic acid and vanillic acid in roots. Using VPE, it was possible to measure levels of 2-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (HBOA), benzoxazolin-2(3H)-one (BOA), ferulic acid, syringic acid and coumaric acid. The levels of HBOA in aerial parts and roots were significantly greater in cis-jasmone treated plants compared to untreated plants. cis-Jasmone is known to be a plant activator in terms of production of defence-related volatile semiochemicals that repel aphids and increase the foraging activity of aphid parasitoids. These results show, for the first time, that cis-jasmone also induces selective production of secondary metabolites that are capable of directly reducing development of pests, diseases and weeds.  相似文献   

16.
The stem rust fungus Puccinia graminis f.sp. tritici is an obligately biotrophic pathogen attacking wheat (Triticum aestivum). In compatible host/pathogen-interactions, the fungus participates in the host's metabolism by establishing functional haustoria in the susceptible plant cells. In highly resistant wheat cultivars, fungal attack is stopped by a hypersensitive response of penetrated host cells. This mechanism of programmed cell death of single plant cells is accompanied by the intracellular accumulation of material with UV-fluorescence typical of phenolic compounds. A similar reaction can be induced in healthy wheat leaves by the application of a rust-derived elicitor. We analysed the biochemical composition of this defense-induced phenolic material. Contents of total soluble and cell wall esterified and etherified phenolic acids were determined in rust-inoculated and elicitor-treated leaves of the fully susceptible wheat cultivar Prelude and its highly resistant, near-isogenic line Prelude-Sr5. While no resistance-related changes occured in any of these fractions, the lignin content as determined by the thioglycolic acid and the acetyl bromide methods increased after elicitor treatment. Nitrobenzene oxidation revealed that the entire increase can be explained by an increase in syringyl units only. These biochemical data were confirmed by fluorescence emission spectra analyses which indicated a defense-induced enrichment of syringyl lignin for cell wall samples both from elicitor-treated wheat leaves and single host cells undergoing a hypersensitive response upon fungal penetration.  相似文献   

17.
Chemical investigations of a microfungus Xylaria sp. isolated from the Australian rainforest tree Glochidion ferdinandi have afforded two new natural products, 2-hydroxy-6-methyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (1) and 2-hydroxy-6-hydroxymethyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (2). Compound 1 has previously been synthesised but only partially characterised. Methylation of 1 using diazomethane afforded the crystalline compound 2,8-dimethoxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester (3), whose structure was determined by single crystal X-ray analysis. This paper reports the full spectroscopic characterisation of compounds 1-3 by NMR, UV, IR and MS data. All compounds were inactive in a brine shrimp lethality assay and several antimicrobial screens.  相似文献   

18.
A sugar ester and an iridoid glycoside from Scrophularia ningpoensis   总被引:3,自引:0,他引:3  
From cytotoxic extracts of the roots of Scrophularia ningpoensis Hemsl. (Scrophulariaceae) a new sugar ester, ningposide D (3-O-acetyl-2-O-p-methoxycinnamoyl-alpha(beta)-L-rhamnopyranose) (1) and a new iridoid glycoside, scrophuloside B4 (6-O-(2'-O-acetyl-3'-O-cinnamoyl-4'-O-p-methoxycinnamoyl-alpha-L-rhamnopyranosyl) catalpol) (2) along with known compounds: oleanonic acid (3), ursolonic acid (4), cinnamic acid (5), 3-hydroxy-4-methoxy benzoic acid (6), 5-(hydroxymethyl)-2-furfural (7) and beta-sitosterol (8) were isolated. The structures of the new compounds were elucidated by spectral data (1, 2D NMR, EI, HRESI-MS and MS/MS). Oleanonic acid (3) and ursolonic acid (4) were found to be cytotoxic against a series of human cancer cell lines with IC50=4.6, 15.5 microM on MCF7; 4.2, 14.5 microM on K562; 14.8, 44.4 microM on Bowes; 24.9, 43.6 microM on T24S; 61.3, 151.5 microM on A549, respectively. Beta-sitosterol (8) inhibited Bowes cells growth at IC50=36.5 microM. Scrophuloside B4 (2) showed activity on K562 and Bowes cells at IC50=44.6, 90.2 microM, respectively.  相似文献   

19.
Lozovaya V  Ulanov A  Lygin A  Duncan D  Widholm J 《Planta》2006,224(6):1385-1399
Metabolic profiling using GC–MS and LC–MS analyses of soluble metabolites and cell wall bound phenolic compounds from maize calluses of different morphogenic competence revealed a number of biochemical characteristics that distinguish tissues with high plant regeneration ability from tissues that cannot efficiently regenerate plants in vitro. Maize cultures of different ages from H99 (compact type I callus) and HiII (friable type II callus) were divided into two different samples: regenerable (R) and non-regenerable (NR) based on known morphologies. Tissues from both genotypes with high morphogenic potential had higher asparagine and aspartate and indole-3-butenol concentrations, decreased sugar and DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) concentrations, low levels of 4-aminobutyric acid (GABA) and chlorogenic acid and lower levels of feruloyl- and sinapoyl glucosides compared to NR tissues. The ether bound cell wall phenolics of tissues with high regeneration potential had higher levels of the predominant G (guaiacyl) units and lower levels of H (p-hydroxyphenyl) and S (syringyl) units and higher ferulic acid/coumaric acid and ferulic acid/diferulic acid ratios. The same trends were found with the ester-bound phenolics of HiII, however, there were only small differences between the H99 R and NR tissues. Concentrations of the major sugars, organic acids, amino acids and soluble aromatic compounds tended to increase as the time after culture initiation increased. The results show that there are differences in general metabolism, phenolic secondary compounds and cell wall composition between R and NR cell types.  相似文献   

20.
The plant growth-regulating activity of a number of new indole derivatives is reported. It is shown that indole-3-acetonitrile (IAN) is converted to indole-3-carboxylic acid by metabolism within wheat and pea tissues, and the mechanism of this a-oxidation reaction has been studied. The relevant indole compounds were synthesized and their metabolism investigated by T.L.C. techniques. N -Methylindole-3-acetonitrile was also shown to be degraded by a-oxidation in wheat and pea tissues and this was separately investigated. While no definite conclusions can be drawn, the evidence indicates that conversion of indole- and Af-methylindole-3-acetonitriles to the corresponding indole-3-aldehyde-cyanohydrins can occur. These compounds then become metabolized to the aldehydes and then to the respective indole-3-carboxylic acids. Indole- and A7-methylindole-3-glyoxylic acids do not appear to be involved in the a-oxidation reaction to any significant extent. Relevant studies on the metabolism of indole-3-acetaldehyde-cyanohydrin are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号