首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The entire chicken lysozyme gene locus including all known cis-regulatory sequences and the 5' and 3' matrix attachment sites defining the borders of the DNase I sensitive chromatin domain, is expressed at a high level and independent of its chromosomal position in macrophages of transgenic mice. It was concluded that the lysozyme gene locus carries a locus control function. We analysed several cis-regulatory deletion mutants to investigate their influence on tissue specificity and level of expression. Position independent expression of the gene is lost whenever one of the upstream tissue specific enhancer regions is deleted, although tissue specific expression is usually retained. Deletion of the domain border fragments has no influence on copy number dependency of expression. However, without these regions an increased incidence of ectopic expression is observed. This suggests that the domain border fragments may help to suppress transgene expression in inappropriate tissues. We conclude, that position independent expression of the lysozyme gene is not controlled by a single specific region of the locus but is the result of the concerted action of several tissue specific upstream regulatory DNA elements with the promoter.  相似文献   

3.
A 21.5 kb DNA fragment carrying the entire chicken lysozyme gene locus was introduced into the germ line of mice. The fragment contains the transcribed region plus 11.5 kb 5'-flanking and 5.5 kb 3'-flanking sequences including all known cis-regulatory elements and the 5' and 3' attachment elements (A-elements) which define the borders of the DNase I sensitive chromatin domain. All sequences which adopt a DNase I hypersensitive chromatin conformation in vivo are present on the construct. Seven founder mice were analysed. All of these expressed chicken lysozyme RNA at high levels specifically in macrophages, as is the case in the donor species. Expression levels are dependent on the copy number of integrated genes indicating that a complete gene locus, as defined by its chromatin structure, functions as an independent regulatory unit when introduced into a heterologous genome.  相似文献   

4.
Position‐independent expression of transgenes in zebrafish   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
The CD8alpha gene locus is regulated by the Ikaros family of proteins   总被引:5,自引:0,他引:5  
Ikaros family members are important regulatory factors in lymphocyte development. Here we show that Ikaros may play an important role in CD4 versus CD8 lineage commitment decisions by demonstrating: (1) that it binds to regulatory elements in the endogenous CD8alpha locus in vivo using thymocyte chromatin immunoprecipitations, (2) that Ikaros suppresses position effect variegation of transgenes driven by CD8 regulatory elements, and (3) that mice with reduced levels of Ikaros and Aiolos show an apparent increase in CD4 populations with immature phenotype, i.e., cells that failed to activate the CD8alpha gene locus. We propose that Ikaros family members function as activators of the CD8alpha gene locus and that their associated activities are critical for appropriate chromatin remodeling transitions during thymocyte differentiation and lineage commitment.  相似文献   

8.
9.
10.
Regulatory elements that lie outside the basal promoter of a gene may be revealed by local changes in chromatin structure and histone modifications. The promoter of the CFTR (cystic fibrosis transmembrane conductance regulator) gene is not responsible for its complex pattern of expression. To identify important regulatory elements for CFTR we have previously mapped DHS (DNase I-hypersensitive sites) across 400 kb spanning the locus. Of particular interest were two DHS that flank the CFTR gene, upstream at -20.9 kb with respect to the translational start site, and downstream at +15.6 kb. In the present study we show that these two DHS possess enhancer-blocking activity and bind proteins that are characteristic of known insulator elements. The DHS core at -20.9 kb binds CTCF (CCCTC-binding factor) both in vitro and in vivo; however, the +15.6 kb core appears to bind other factors. Histone-modification analysis across the CFTR locus highlights structural differences between the -20.9 kb and +15.6 kb DHS, further suggesting that these two insulator elements may operate by distinct mechanisms. We propose that these two DHS mark the boundaries of the CFTR gene functional unit and establish a chromatin domain within which the complex profile of CFTR expression is maintained.  相似文献   

11.
For more than 30 years it was believed that globin gene domains included only genes encoding globin chains. Here we show that in chickens, the domain of α-globin genes also harbor the non-globin gene TMEM8. It was relocated to the vicinity of the α-globin cluster due to inversion of an ∼170-kb genomic fragment. Although in humans TMEM8 is preferentially expressed in resting T-lymphocytes, in chickens it acquired an erythroid-specific expression profile and is upregulated upon terminal differentiation of erythroblasts. This correlates with the presence of erythroid-specific regulatory elements in the body of chicken TMEM8, which interact with regulatory elements of the α-globin genes. Surprisingly, TMEM8 is not simply recruited to the α-globin gene domain active chromatin hub. An alternative chromatin hub is assembled, which includes some of the regulatory elements essential for the activation of globin gene expression. These regulatory elements should thus shuttle between two different chromatin hubs.  相似文献   

12.
13.
14.
15.
16.
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus.  相似文献   

17.
18.
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken α-globin silencer-enhancer elements located 3′ of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken α-globin enhancer plays a central role in its capacity to differentially regulate α-globin gene expression during erythroid differentiation and development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号