首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tomato and pepper are two Solanaceous fruit crops that display an enormous diversity in fruit morphology. In this review, we will present an overview of the history of tomato and pepper and discuss key plant traits that were specifically selected during domestication of the two species. The traits discussed are fruit weight, shape, colour, ripening, pungency and plant architecture. We will review these characteristics as well as the genetic loci or genes that control these features, questioning whether mutations at orthologous loci occurred independently in these two species or whether unique plant and fruit features resulted in selection at different genes.  相似文献   

3.
The heirloom tomato cultivar Yellow Stuffer produces fruit that are similar in shape and structure to fruit produced by the bell pepper varieties of garden pepper. To determine the genetic basis of this extreme fruit type in tomato, quantitative trait loci (QTL) analysis was performed on an F(2) population derived from a cross between Yellow Stuffer and the related species, Lycopersicon pimpinellifolium, which produces a small, round fruit typical of most wild species. F(2) plants were analyzed for both fruit size and the degree to which their fruit resembled the bell pepper. Three QTL were determined to influence bell pepper shape and seven QTL influenced fruit mass. The map positions of all three bell shape and six out of seven fruit size QTL appear to be allelic to components of fruit morphology analyzed in this population and to major fruit morphology QTL reported previously, adding support to the hypothesis that the majority of fruit size and shape variation in cultivated tomato is attributable to allelic variation at a limited number of loci. However, novel loci controlling components of fruit morphology, such as elongated fruit shape, bumpiness, number of seed per fruit and flowers per inflorescence were identified in this study as well. The three bell shape loci involved are: bell2.1, bell2.2 and bell8.1, and appear to correspond to locule number2.1 ( lcn2.1) and fruit weight 2.2 ( fw2.2) and fruit shape 8.1 ( fs8.1), respectively. The Yellow Stuffer alleles at lcn2.1 and fw2.2 increase locule number and fruit size, respectively, hence contributing to the overall bell pepper shape. The Yellow Stuffer allele at fs8.1 causes convex locule walls, giving the extended, bumpy shape characteristic of bell peppers. In addition, most fruit size QTL correspond to loci controlling number of flowers per inflorescence and/or stem-end blockiness. Comparisons among previously identified fruit morphology loci in tomato, eggplant and pepper suggest that loci affecting several aspects of fruit morphology may be due to pleiotrophic effects of the same, orthologous loci in these species. Moreover, it appears that the evolution of bell pepper-shaped tomato fruit may have proceeded through mutations of some of the same genes that led to bell pepper-type fruit in garden pepper.  相似文献   

4.
Quantitative trait locus (QTL) mapping for fruit weight and shape in pepper (Capsicum spp.) was performed using C. chinense and C. frutescens introgression lines of chromosomes 2 and 4. In chromosome 2, a single major fruit-weight QTL, fw2.1, was detected in both populations that explained 62% of the trait variation. This QTL, as well as a fruit-shape QTL, fs2.1, which had a more minor effect, were localized to the tomato fruit-shape gene ovate. The cloned tomato fruit-weight QTL, fw2.2, did not play a major role in controlling fruit size variations in pepper. In chromosome 4, two fruit-weight QTLs, fw4.1 and fw4.2, were detected in the same genomic regions in both mapping populations. In addition, a single fruit-shape QTL was detected in each of the mapping populations that co-localized with one of the fruit-weight QTLs, suggesting pleiotropy or close linkage of the genes controlling size and shape. fw2.1 and fw4.2 represent major fruit-weight QTLs that are conserved in the three Capsicum species analyzed to date for fruit-size variations. Co-localization of the pepper QTLs with QTLs identified for similar traits in tomato suggests that the pepper and tomato QTLs are orthologous. Compared to fruit-shape QTLs, fruit-weight QTLs were more often conserved between pepper and tomato. This implies that different modes of selection were employed for these traits during domestication of the two Solanaceae species.S. Zygier and A. Ben Chaim contributed equally to this work.  相似文献   

5.
Fruit weight is an important character in many crops. In tomato (Solanum lycopersicum), fruit weight is controlled by many loci, some of which have a major effect on the trait. Fruit weight 11.3 (fw11.3) and fasciated (fas) have been mapped to the same region on chromosome 11. We sought to determine whether these loci represent alleles of the same or separate genes. We show that fas and fw11.3 are not allelic and instead represent separate genes. The fw11.3 locus was fine-mapped to a 149-kb region comprised of 22 predicted genes. Unlike most fruit weight loci, gene action at fw11.3 indicates that the mutant allele is partially dominant over the wild allele. We also investigate the nature of the genome rearrangement at the fas locus and demonstrate that the mutation is due to a 294-kb inversion disrupting the YABBY gene known to underlie the fas locus.  相似文献   

6.
马爱民  漆小泉 《植物学报》2018,53(5):578-580
番茄(Solanum lycopersicum)在育种过程中经历了驯化、改良、分化和渐渗等不同阶段, 在这一选择过程中番茄的果重和风味等均发生了显著改变, 但是目前对于番茄育种过程中代谢物的变化及其遗传基础却不是十分清楚。近期, 中国农业科学院深圳农业基因组研究所黄三文研究组与华中农业大学罗杰研究组利用多组学(变异组、转录组及代谢组)手段系统解析了番茄育种过程中代谢物的变化。结果表明, 在番茄驯化过程中有46个甾醇糖基生物碱类物质(SGAs)含量逐渐降低, 并获得了7个与其中44个物质显著相关的遗传位点。因此, 在番茄育种过程中通过优异等位位点的组合可以显著降低SGAs的含量; 同时发现在番茄以果重为目标的选择过程中, 控制果重基因周围其它基因的“搭车效应”是引起许多代谢物变化的重要遗传因素, 及在育种过程中对某一性状的选择会对其它性状产生重要影响。该研究首次利用多组学手段系统解析了选择对作物代谢物的影响, 为番茄品质改良奠定了良好的理论基础。  相似文献   

7.

Background

Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection.

Results

Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups.

Conclusions

This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1444-1) contains supplementary material, which is available to authorized users.  相似文献   

8.
Phenotypic diversity within cultivated tomato (Solanum lycopersicum) is particularly evident for fruit shape and size. Four genes that control tomato fruit shape have been cloned. SUN and OVATE control elongated shape whereas FASCIATED (FAS) and LOCULE NUMBER (LC) control fruit locule number and flat shape. We investigated the distribution of the fruit shape alleles in the tomato germplasm and evaluated their contribution to morphology in a diverse collection of 368 predominantly tomato and tomato var. cerasiforme accessions. Fruits were visually classified into eight shape categories that were supported by objective measurements obtained from image analysis using the Tomato Analyzer software. The allele distribution of SUN, OVATE, LC, and FAS in all accessions was strongly associated with fruit shape classification. We also genotyped 116 representative accessions with additional 25 markers distributed evenly across the genome. Through a model-based clustering we demonstrated that shape categories, germplasm classes, and the shape genes were nonrandomly distributed among five genetic clusters (P < 0.001), implying that selection for fruit shape genes was critical to subpopulation differentiation within cultivated tomato. Our data suggested that the LC, FAS, and SUN mutations arose in the same ancestral population while the OVATE mutation arose in a separate lineage. Furthermore, LC, OVATE, and FAS mutations may have arisen prior to domestication or early during the selection of cultivated tomato whereas the SUN mutation appeared to be a postdomestication event arising in Europe.  相似文献   

9.
Doganlar S  Frary A  Daunay MC  Lester RN  Tanksley SD 《Genetics》2002,161(4):1713-1726
Quantitative trait loci (QTL) for domestication-related traits were identified in an interspecific F(2) population of eggplant (Solanum linnaeanum x S. melongena). Although 62 quantitative trait loci (QTL) were identified in two locations, most of the dramatic phenotypic differences in fruit weight, shape, color, and plant prickliness that distinguish cultivated eggplant from its wild relative could be attributed to six loci with major effects. Comparison of the genomic locations of the eggplant fruit weight, fruit shape, and color QTL with the positions of similar loci in tomato, potato, and pepper revealed that 40% of the different loci have putative orthologous counterparts in at least one of these other crop species. Overall, the results suggest that domestication of the Solanaceae has been driven by mutations in a very limited number of target loci with major phenotypic effects, that selection pressures were exerted on the same loci despite the crops' independent domestications on different continents, and that the morphological diversity of these four crops can be explained by divergent mutations at these loci.  相似文献   

10.
In order to screen for putative candidate genes linked to tomato fruit weight and to sugar or acid content, genes and QTLs involved in fruit size and composition were mapped. Genes were selected among EST clones in the TIGR tomato EST database (http://www.tigr.org/tdb/tgi/lgi/) or corresponded to genes preferentially expressed in the early stages of fruit development. These clones were located on the tomato map using a population of introgression lines (ILs) having one segment of Lycopersicon pennellii (LA716) in a L. esculentum (M82) background. The 75 ILs allowed the genome to be segmented into 107 bins. Sixty-three genes involved in carbon metabolism revealed 79 loci. They represented enzymes involved in the Calvin cycle, glycolysis, the TCA cycle, sugar and starch metabolism, transport, and a few other functions. In addition, seven cell-cycle-specific genes mapped into nine loci. Fourteen genes, primarily expressed during the cell division stage, and 23 genes primarily expressed during the cell expansion stage, revealed 24 and 26 loci, respectively. The fruit weight, sugars, and organic acids content of each IL was measured and several QTLs controlling these traits were mapped. Comparison between map location of QTLs and candidate gene loci indicated a few candidate genes that may influence the variation of sugar or acid contents. Furthermore, the gene/QTL locations could be compared with the loci mapped in other tomato populations.  相似文献   

11.
12.
Crop evolution is a long‐term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome‐wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue‐specific expression patterns indicated that the up‐regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up‐regulated selection genes were identified in leaves and seeds than in the other organs. Genome‐wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large‐scale characterization of key agronomic traits in this crop species.  相似文献   

13.
Papaya (Carica papaya L.) is a pan-tropical tree that bears fruit exhibiting a wide range of size and shape. Depending on variety and environment, papaya fruit may weigh from 0.2 kg up to 10 kg. Papaya fruit shape is a sex-linked trait ranging from spherical to ovate, cylindrical or pyriform. An F2 mapping population, produced from a cross between the Thai variety Khaek Dum, bearing 1.2 kg, red-fleshed fruit, and variety 2H94, a Hawaii Solo type bearing a 0.2 kg, yellow-fleshed fruit, was used to identify quantitative trait loci (QTLs) that influence papaya fruit characters including weight, diameter, length and shape. Fruit phenotype data, collected from two subpopulations planted in successive growing seasons, showed striking differences by year indicating significant genotype × environment interactions. Fourteen QTL with phenotypic effects ranging from 5 to 23% were identified across six linkage groups (LGs) with clusters of two or more QTL on LGs 02, 03, 07 and 09. These loci contain homologs to the tomato fruit QTL ovate, sun and fw2.2 regulating fruit size and shape. The papaya fruit QTL provide a starting point for dissecting the genetic pathways leading to extreme fruit size and shape and may prove useful for papaya breeders attempting to tailor new varieties to specific consumer markets.  相似文献   

14.
In an effort to determine the genetic basis of exceptionally large tomato fruits, QTL analysis was performed on a population derived from a cross between the wild species Lycopersicon pimpinellifolium (average fruit weight, 1 g) and the L. esculentum cultivar var. Giant Heirloom, which bears fruit in excess of 1000 g. QTL analysis revealed that the majority (67%) of phenotypic variation in fruit size could be attributed to six major loci localized on chromosomes 1-3 and 11. None of the QTL map to novel regions of the genome-all have been reported in previous studies involving moderately sized tomatoes. This result suggests that no major QTL beyond those already reported were involved in the evolution of extremely large fruit. However, this is the first time that all six QTL have emerged in a single population, suggesting that exceptionally large-fruited varieties, such as Giant Heirloom, are the result of a novel combination of preexisting QTL alleles. One of the detected QTL, fw2.2, has been cloned and exerts its effect on fruit size through global control of cell division early in carpel/fruit development. However, the most significant QTL detected in this study (fw11.3, lcn11.1) maps to the bottom of chromosome 11 and seems to exert its effect on fruit size through control of carpel/locule number. A second major locus, also affecting carpel number (and hence fruit size), was mapped to chromosome 2 (fw2.1, lcn2.1). We propose that these two carpel number QTL correspond to the loci described by early classical geneticists as fasciated (f) and locule number (lc), respectively.  相似文献   

15.
Y. Eshed  D. Zamir 《Genetics》1995,141(3):1147-1162
Methodologies for mapping of genes underlying quantitative traits have advanced considerably but have not been accompanied by a parallel development of new population structures. We present a novel population consisting of 50 introgression lines (ILs) originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82). Each of the lines contains a single homozygous restriction fragment length polymorphism-defined L. pennellii chromosome segment, and together the lines provide complete coverage of the genome and a set of lines nearly isogenic to M82. A field trial of the ILs and their hybrids revealed at least 23 quantitative trait loci (QTL) for total soluble solids content and 18 for fruit mass; these estimates are twice as high as previously reported estimates based on traditional mapping populations. For finer mapping of a QTL affecting fruit mass, the introgressed segment was recombined into smaller fragments that allowed the identification of three linked loci. At least 16 QTL for plant weight, 22 for percentage green fruit weight, 11 for total yield and 14 for total soluble solids yield were identified. Gene action for fruit and plant characteristics was mainly additive, while overdominance (or pseudo-overdominance) of wild species introgressions was detected for yield.  相似文献   

16.
An interspecific F(2) population from a cross between cultivated eggplant, Solanum melongena, and its wild relative, S. linnaeanum, was analyzed for quantitative trait loci (QTL) affecting leaf, flower, fruit and plant traits. A total of 58 plants were genotyped for 207 restriction fragment length polymorphism (RFLP) markers and phenotyped for 18 characters. One to eight loci were detected for each trait with a total of 63 QTL identified. Overall, 46% of the QTL had allelic effects that were the reverse of those predicted from the parental phenotypes. Wild alleles that were agronomically superior to the cultivated alleles were identified for 42% of the QTL identified for flowering time, flower and fruit number, fruit set, calyx size and fruit glossiness. Comparison of the map positions of eggplant loci with those for similar traits in tomato, potato and pepper revealed that 12 of the QTL have putative orthologs in at least one of these other species and that putative orthology was most often observed between eggplant and tomato. Traits showing potential orthology were: leaf length, shape and lobing; days to flowering; number of flowers per inflorescence; plant height and apex, leaf and stem hairiness. The functionally conserved loci included a major leaf lobing QTL ( llob6.1) that is putatively orthologous to the potato leaf ( c) and/or Petroselinum ( Pts) mutants of tomato, two flowering time QTL ( dtf1.1, dtf2.1) that also have putative counterparts in tomato and four QTL for trichomes that have potential orthologs in tomato and potato. These results support the mounting evidence of conservation of gene function during the evolution of eggplant and its relatives from their last common ancestor and indicate that this conservation was not limited to domestication traits.  相似文献   

17.
The seeds of domesticated plants are normally much larger than those of their wild counterparts. This change in seed weight was most likely in response to the selection pressure for yield, uniform germination and seedling vigor which was exerted by humans during domestication. However, despite the evolutionary and agronomic significance of seed weight, very little is know about the genetic and developmental controls of this trait; and, thus far, none of the genes in this pathway have been isolated from any plant species. QTL mapping experiments conducted in tomato during the past decade have allowed the identification of many seed-weight QTLs and have also revealed that only a few loci are responsible for the majority of the seed-weight changes that accompanied the domestication of tomato. This review presents a consensus map for seed weight QTL identified in previously published reports and in unpublished results from our laboratory. This summary of seed-weight QTL data allows for the identification of the major loci controlling this trait in the genus Lycopersicon. It is hoped that this work will allow the elucidation of this important phenotypic transition that occurred during crop-plant domestication and will also provide the starting point for the cloning of a gene responsible for seed-weight variation. Received: 21 April 1999 / Accepted: 13 October 1999  相似文献   

18.
Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.

A large-scale genome-wide association study sheds light on genetic and genomic bases underlying important yield-related traits in tomato.  相似文献   

19.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

20.
Fruit size and shape are two major factors determining yield, quality and consumer acceptability for many crops. Like most traits important to agriculture, both are quantitatively inherited. Despite their economic importance none of the genes controlling either of these traits have been cloned, and little is known about the control of the size and shape of domesticated fruit. Tomato represents a model fruit-bearing domesticated species characterized by a wide morphological diversity of fruits. The many genetic and genomic tools available for this crop can be used to unraveal the molecular bases of the developmental stages which presumably influence fruit architecture, size and shape. The goal of this review is to summarize data from the tomato QTL studies conducted over the past 15 years, which together allow the identification of the major QTLs responsible for fruit domestication in tomato. These results provide the starting point for the isolation of the genes involved in fruit-size/shape determination in tomato and potentially other fruit-bearing plants. Received: 21 January 1999 / Accepted: 12 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号