首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang Z  Singhvi A  Kong P  Scott K 《Cell》2004,117(7):981-991
Drosophila taste compounds with gustatory neurons on many parts of the body, suggesting that a fly detects both the location and quality of a food source. For example, activation of taste neurons on the legs causes proboscis extension or retraction, whereas activation of proboscis taste neurons causes food ingestion or rejection. We examined whether the features of taste location and taste quality are mapped in the fly brain using molecular, genetic, and behavioral approaches. We find that projections are segregated by the category of tastes that they recognize: neurons that recognize sugars project to a region different from those recognizing noxious substances. Transgenic axon labeling experiments also demonstrate that gustatory projections are segregated based on their location in the periphery. These studies reveal the gustatory map in the first relay of the fly brain and demonstrate that taste quality and position are represented in anatomical projection patterns.  相似文献   

3.
Proboscis extension response (PER) is a taste behavior assay that has been used in flies as well as in honeybees.On the surface of the fly's mouth (labellum), there are hair-like structures called sensilla which houses taste neurons. When an attractive substance makes contact to the labellum, the fly extends its proboscis to consume the material. Proboscis Extension Response (PER) assay measures this taste behavior response, and it is a useful method to learn about food preferences in a single fly. Solutions of various sugars, such as sucrose, glucose and fructose, are very attractive to the fly. The effect of aversive substances can also be tested as reduction of PER when mixed in a sweet solution.Despite the simplicity of the basic procedure, there are many things that can prevent it from working. One of the factors that requires attention is the fly's responsive state. The required starvation time to bring the fly to the proper responsive state varies drastically from 36 to 72 hours. We established a series of controls to evaluate the fly's state and which allows screening out of non-responsive or hyper-responsive individual animals. Another important factor is the impact level and the position of the contact to the labellum, which would be difficult to describe by words. This video presentation demonstrates all these together with several other improvements that would increase the reproducibility of this method.  相似文献   

4.
A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.  相似文献   

5.
HPLC with electrochemical detection was used to determine the levels of p-hydroxyphenylethanolamine (octopamine), 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (5-HT) in the brains of control, reserpine, and d-amphetamine-treated blow flies, Phormia regina Meigen. Parallel studies were carried out to assess the effects of the two drugs on fly feeding behavior, measured as mean acceptance threshold: the minimum sucrose concentration to which the average fly in a population will respond by proboscis extension when its tarsi contact the solution. In saline-injected control flies, all three amines were found at levels of approximately 2 pmol/brain. Thirty minutes after injection with d-amphetamine (12 micrograms/fly), brain octopamine was depleted by 85%, whereas dopamine and 5-HT were depleted by 70%. Reserpine (5 micrograms/fly) caused 70% depletion of dopamine and greater than 90% depletion of both octopamine and 5-HT 24 h after injection. However, the effect of reserpine was much slower in onset (hours versus minutes) and more persistent (days versus hours) than was the effect of d-amphetamine. With either drug, the time course of amine depletion closely matched the time course of the increase in feeding threshold observed in drug-treated flies. These results suggest that CNS pools of the biogenic amines, octopamine, dopamine, and 5-HT are important in governing blow fly responsiveness to food stimuli.  相似文献   

6.
The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.  相似文献   

7.
The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.  相似文献   

8.
An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in this response. Two G protein alpha subunits GPA-3 and ODR-3, expressed in ASH and in different, nonoverlapping sets of sensory neurons, are necessary for the response to quinine, although the effect of odr-3 can only be appreciated in the absence of gpa-3. We identified and cloned a new gene, qui-1, necessary for quinine and SDS avoidance. qui-1 codes for a novel protein with WD-40 domains and which is expressed in the avoidance sensory neurons ASH and ADL.  相似文献   

9.
Sugar receptors in Drosophila   总被引:1,自引:0,他引:1  
The detection and discrimination of chemical compounds in potential foods are essential sensory processes when animals feed. The fruit fly Drosophila melanogaster employs 68 different gustatory receptors (GRs) for the detection of mostly nonvolatile chemicals that include sugars, a diverse group of toxic compounds present in many inedible plants and spoiled foods, and pheromones [1-6]. With the exception of a trehalose (GR5a) and a caffeine (GR66a) receptor [7-9], the functions of GRs involved in feeding are unknown. Here, we show that the Gr64 genes encode receptors for numerous sugars. We generated a fly strain that contained a deletion for all six Gr64 genes (DeltaGr64) and showed that these flies exhibit no or a significantly diminished proboscis extension reflex (PER) response when stimulated with glucose, maltose, sucrose, and several other sugars. The only considerable response was detected when Gr64 mutant flies were stimulated with fructose. Interestingly, response to trehalose is also abolished in these flies, even though they contain a functional Gr5a gene, which has been previously shown to encode a receptor for this sugar [8, 9]. This observation indicates that two or more Gr genes are necessary for trehalose detection, suggesting that GRs function as multimeric receptor complexes. Finally, we present evidence that some members of the Gr64 gene family are transcribed as a polycistronic mRNA, providing a mechanism for the coexpression of multiple sugar receptors in the same taste neurons.  相似文献   

10.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

11.
In their recent paper, Li and colleagues discover that cold food tastes less sweet to flies, in part by activating bitter sensory neurons through a rhodopsin-dependent mechanism [1]. This work establishes temperature as an important variable in understanding fly taste processing and adds diversity to the sensory roles for rhodopsin receptors.  相似文献   

12.
To understand the functional similarities of fly and mammalian taste receptors, we used a top-down approach that first established the fly sweetener-response profile. We employed the fruit fly Drosophila melanogaster, an omnivorous human commensal, and determined its sensitivity to an extended set of stimuli that humans find sweet. Flies were tested with all sweeteners in 2 assays that measured their taste reactivity (proboscis extension assay) and their ingestive preferences (free roaming ingestion choice test). A total of 21 sweeteners, comprised of 11 high-potency sweeteners, 2 amino acids, 5 sugars, 2 sugar alcohols, and a sweet salt (PbCl2), were tested in both assays. We found that wild-type Drosophila responded appetitively to most high-potency sweeteners preferred by humans, even those not considered sweet by rodents or new world monkeys. The similarities in taste preferences for sweeteners suggest that frugivorous/omnivorous apes and flies have evolved promiscuous carbohydrate taste detectors with similar affinities for myriad high-potency sweeteners. Whether these perceptual parallels are the result of convergent evolution of saccharide receptor-binding mechanisms remains to be determined.  相似文献   

13.
Some components of bitterness make key flavor contributions to promote the palatability of foods, whereas other components are recognized as aversive signals to avoid consuming harmful substances. These contradictory behaviors suggest that humans tolerate tastes of bitterants based on certain criteria. Here, we investigated human taste tolerance and sensory cues leading to diverse taste tolerance of bitter compounds. Tolerance of eight bitter compounds, which are typically contained in foods, was evaluated by measuring detection and rejection thresholds. The results revealed that the level of tolerance of each compound was variable, and some compounds showed an acceptable concentration regarding the suprathreshold intensity. Tolerance did not depend on the nutritive value or attenuation and accumulation characteristics of bitterness and bitter taste receptors. These results suggest that the criteria controlling tolerance of bitter compounds may be derived from a complex relationship between the taste quality and cognitive process.  相似文献   

14.
The effect of repeated exposure to sensory stimuli, with or without reward is well known to induce stimulus-specific modifications of behaviour, described as different forms of learning. In recent studies we showed that a brief single pre-exposure to the female-produced sex pheromone or even a predator sound can increase the behavioural and central nervous responses to this pheromone in males of the noctuid moth Spodoptera littoralis. To investigate if this increase in sensitivity might be restricted to the pheromone system or is a form of general sensitization, we studied here if a brief pre-exposure to stimuli of different modalities can reciprocally change behavioural and physiological responses to olfactory and gustatory stimuli. Olfactory and gustatory pre-exposure and subsequent behavioural tests were carried out to reveal possible intra- and cross-modal effects. Attraction to pheromone, monitored with a locomotion compensator, increased after exposure to olfactory and gustatory stimuli. Behavioural responses to sucrose, investigated using the proboscis extension reflex, increased equally after pre-exposure to olfactory and gustatory cues. Pheromone-specific neurons in the brain and antennal gustatory neurons did, however, not change their sensitivity after sucrose exposure. The observed intra- and reciprocal cross-modal effects of pre-exposure may represent a new form of stimulus-nonspecific general sensitization originating from modifications at higher sensory processing levels.  相似文献   

15.
It was recently shown that in some subjects capsaicin can evoke bitterness as well as burning and stinging, particularly in the circumvallate (CV) region of the tongue. Because perception of bitterness from capsaicin is characterized by large individual differences, the main goal of the present study was to learn whether people who taste capsaicin as bitter also report bitterness from structurally similar sensory irritants that are known to stimulate capsaicin-sensitive neurons. The irritancy and taste of capsaicin and two of its most commonly studied congeners, piperine and zingerone, were measured in individuals who had been screened for visibility of, and reliable access to, the CV papillae. Approximately half of these individuals reported tasting bitterness from all three irritants when the stimuli were swabbed directly onto the CV papillae. Concentrations that produced similar levels of burning sensation across subjects also produced similar (though lower) levels of bitter taste. These results are consistent with the hypothesis that capsaicin and its congeners stimulate bitterness via a common sensory receptor that is distributed differentially among individuals. Additionally, bitter tasters rated gustatory qualities (but not burning and stinging) slightly but significantly higher than did bitter non-tasters, which suggests that perception of capsaicin bitterness is associated with a higher overall taste responsiveness (but not chemesthetic responsiveness) in the CV region.  相似文献   

16.
Herbivorous animals may benefit from the capability to discriminate the taste of bitter compounds since plants produce noxious compounds, some of which toxic, while others are only unpalatable. Our goal was to investigate the contribution of the peripheral taste system in the discrimination of different bitter compounds by an herbivorous insect using the larvae of Papilio hospiton Géné as the experimental model, showing a narrow choice range of host plants. The spike activity from the lateral and medial styloconic sensilla, housing two and one bitter-sensitive gustatory receptor neurons (GRNs), respectively, was recorded following stimulation with nicotine, caffeine, salicin and quercitrin and the time course of the discharges was analyzed. Nicotine and caffeine activated all three bitter-sensitive GRNs, while salicin and quercitrin affected only two of them. In feeding behavior bioassays, intact larvae ate glass-fiber disks moistened with salicin and quercitrin, but rejected those with nicotine and caffeine, while lateral sensillum-ablated insects also ate the disks with the two latter compounds. The capability to discriminate bitter taste stimuli and the neural codes involved are discussed.  相似文献   

17.
Discrimination of edible and noxious food is crucial for survival in all organisms. We have studied the physiology of the gustatory receptor neurons (GRNs) in contact chemosensilla (insect gustatory organs) located on the antennae of the moth Heliothis virescens, emphasizing putative phagostimulants and deterrents. Sucrose and the 2 bitter substances quinine and sinigrin elicited responses in a larger proportion of GRNs than inositol, KCl, NaCl, and ethanol, and the firing thresholds were lowest for sucrose and quinine. Variations in GRN composition in individual sensilla occurred without any specific patterns to indicate specific sensillum types. Separate neurons showed excitatory responses to sucrose and the 2 bitter substances quinine and sinigrin, implying that the moth might be able to discriminate bitter substances in addition to separating phagostimulants and deterrents. Besides being detected by separate receptors on the moth antennae, the bitter tastants were shown to have an inhibitory effect on phagostimulatory GRNs. Sucrose was highly appetitive in behavioral studies of proboscis extension, whereas quinine had a nonappetitive effect in the moths.  相似文献   

18.
Chronic rinsing with chlorhexidine, an oral-antiseptic, has been shown to decrease the saltiness of NaCl and the bitterness of quinine. The effect of acute chlorhexidine on taste has not been investigated. The purpose of the present study was to examine the effect of acute chlorhexidine rinses on taste intensity and quality of 11 stimuli representing sweet, salt, sour, bitter and savory. All stimuli were first matched for overall intensity so the effects of chlorhexidine would be directly comparable across compounds. As a control treatment, the bitter taste of chlorhexidine digluconate (0.12%) was matched in intensity to quinine HCl, which was found to cross-adapt the bitterness of chlorhexidine. Subjects participated in four experimental conditions: a pre-test, a quinine treatment, a chlorhexidine treatment, and a post-test condition, while rating total taste intensity and taste qualities in separate test sessions. Relative to the quinine treatment, chlorhexidine was found to decrease the salty taste of NaCl, KCl and NH4Cl, and not to significantly affect the tastes of sucrose, monosodium glutamate (MSG), citric acid, HCl and the taste of water. The bitter taste of urea, sucrose octa-acetate and quinine were suppressed after chlorhexidine rinses relative to water rinses, but were only marginally suppressed relative to quinine rinses. Potential mechanisms are discussed.  相似文献   

19.
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.  相似文献   

20.
Serotonin and the 5HT(1A) receptor are expressed in a subset of taste receptor cells, and the 5HT(3) receptor is expressed on afferent fibers innervating taste buds. Exogenous administration of the selective serotonin reuptake inhibitor, paroxetine, has been shown to increase taste sensitivity to stimuli described by humans as sweet and bitter. Serotonergic agonists also decrease food and fluid intake, and it is possible that modulations of serotonin may alter taste-based hedonic responsiveness; alternatively, or in combination, serotonin may interact with physiological state to impact ingestive behavior. In this study, the unconditioned licking of prototypical taste stimuli by rats in brief-access taste tests was assessed following paroxetine administration (0.3-10 mg/kg intraperitoneal). We also measured sucrose licking by rats in different deprivation states after paroxetine (5 mg/kg). In neither experiment did we find any evidence of an effect of paroxetine on licking relative to water to any of the taste stimuli in the brief-access test at doses that decreased food intake. However, in some conditions, paroxetine decreased trials initiated to tastants. Therefore, a systemic increase in serotonin via paroxetine administration can decrease appetitive behavior in brief-access tests but is insufficient to alter taste-guided consummatory behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号