首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO2 photoassimilation. Resistance of photosystem II to sulfide toxicity, allowing for oxygenic photosynthesis under sulfide, is found in cyanobacteria exposed to low H2S concentrations in various hot springs. When H2S levels exceed 200 μM another type of adaptation involving partial induction of anoxygenic photosynthesis, operating in concert with partially inhibited oxygenic photosynthesis, is found in cyanobacterial strains isolated from both hot springs and hypersaline cyanobacterial mats. The fourth type of adaptation to sulfide is found at H2S concentrations higher than 1 mM and involves a complete replacement of oxygenic photosynthesis by an effective sulfide-dependent, photosystem II-independent anoxygenic photosynthesis. The ecophysiology of the various sulfide-adapted cyanobacteria may point to their uniqueness within the division of cyanobacteria.  相似文献   

2.
Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [14C] NaHCO3 under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 μM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.  相似文献   

3.
In order to assess the role of cyanobacteria in the formation and dynamics of microenvironments in microbial mats, we studied an experimental biofilm of a benthic, halotolerant strain, belonging to the Halothece cluster of cyanobacteria. The 12-week-old biofilm developed in a sand core incubated in a benthic gradient chamber under opposing oxygen and sulfide vertical concentration gradients. At the biofilm surface, and as a response to high light irradiances, specific accumulation of myxoxanthophyll was detected in the cells, consistent with the typical vertical distribution of sun versus shade species in nature. The oxygen turn-over in terms of gross photosynthesis and net productivity rates was comparable to oxygen dynamics in natural microbial mats. Sulfide blocked O(2) production at low irradiances in deep biofilm layers but the dynamics of H(2)S and pH demonstrated that sulfide removal by anoxygenic photosynthesis was taking place. At higher irradiances, as soon as H(2)S was depleted, the cells switched to oxygenic photosynthesis as has been postulated for natural communities. The similarities between this experimental biofilm and natural benthic microbial mats demonstrate the central role of cyanobacteria in shaping microenvironmental gradients and processes in other complex microbial communities.  相似文献   

4.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

5.
6.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

7.
8.
Mass occurrence of benthic cyanobacterial mats in a sequence of Late Devonian black shales and bituminous limestones of the Holy Cross Mts. (central Poland), enclosing the famous Kellwasser and Hangenberg extinction horizons, is reported. The microbiota forming the mats is compared with some modern benthic chroococcalean cyanobacteria. Similarly to their extant counterparts, the Devonian cyanobacteria must had been phototrophic and oxygenic aerobes which could, however, tolerate slightly sulfidic conditions characterizing the near-bottom waters of the Late Devonian epicontinental sea. The cyanobacterial mats successfully colonized the oxygen-deficient and H(2) S-enriched seabed otherwise unfavorable for most other benthic biota. The redox state of this sluggish Late Devonian sea, ascribed previously mostly to anoxic or euxinic conditions, is reassessed as probably pulsating between anoxic, dysoxic, and weakly oxic conditions. The redox state was dependent on the rate of oxygen production by the cyanobacterial mats, the intensity of H(2) S emissions from the decaying mat biomass, and the rate of planktonic production.  相似文献   

9.
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.Subject terms: Microbial ecology, Biogeochemistry, Water microbiology  相似文献   

10.
Abstract: Three strains of cyanobacteria isolated from karstic Lake Arcas were tested for photosynthetic adaptations to soluble sulfide. One of them, AO11, was identified as Oscillatoria cf. ornata , and forms dense populations in the sulfide-rich anoxic hypolimnion of this lake. This cyanobacterium was able to perform sulfide-dependent anoxygenic photosynthesis and its oxygenic photosynthesis was relatively insensitive to sulfide. The other strains studied were AP1 and AO21, identified respectively as Pseudanabaena sp. and Oscillatoria cf. tenuis , populations of which were present only in epilimnetic waters at low population densities. Pseudanabaena sp. also carried out anoxygenic photosynthesis, but oxygenic photosynthesis was totally inhibited by 0.5 mM sulfide. Oscillatoria cf. tenuis lost most of its oxygenic photosynthetic capacity when submitted to 0.1 mM sulfide and anoxygenic photosynthesis accounted for less than 20% of sulfide-free controls. In addition to different photosynthetic capabilities, the three cyanobacteria exhibited differences in light-harvesting photosynthetic accessory pigments. Pigment analysis of cultures grown under different light conditions showed the capacity of Oscillatoria cf. ornata AO11 to produce phycoerythrin under low light intensity or under predominantly green light, while neither Pseudanabaena sp. AP1 nor Oscillatoria cf. tenuis AO21 produced this pigment. The complementary chromatic adaptation of Oscillatoria cf. ornata correlates well with its summertime distribution under the dim light field of the hypolimnion. The distribution and abundance of specific cyanobacterial populations in Lake Arcas can thus be explained by the interplay of light regime and presence of sulfide as some of the most determinant ecological parameters.  相似文献   

11.
Benthic cyanobacterial mats with the filamentous Microcoleus chthonoplastes as the dominant phototroph grow in oxic hypersaline environments such as Solar Lake, Sinai. The cyanobacteria are in situ exposed to chemical variations between 200 μmol of sulfide liter−1 at night and 1 atm pO2 during the day. During experimental H2S to O2 transitions the microbial community was shown to shift from anoxygenic photosynthesis, with H2S as the electron donor, to oxygenic photosynthesis. Microcoleus filaments could carry out both types of photosynthesis concurrently. Anoxygenic photosynthesis dominated at high sulfide levels, 500 μmol liter−1, while the oxygenic reaction became dominant when the sulfide level was reduced below 100 to 300 μmol liter−1 (25 to 75 μmol of H2S liter−1). An increasing inhibition of the oxygenic photosynthesis was observed upon transition to oxic conditions from increasing sulfide concentrations. Oxygen built up within the Microcoleus layer of the mat even under 5 mmol of sulfide liter−1 (500 μmol of H2S liter−1) in the overlying water. The implications of such a localized O2 production in a highly reducing environment are discussed in relation to the evolution of oxygenic photosynthesis during the Proterozoic era.  相似文献   

12.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

13.
Simultaneous measurements of photosynthesis (both oxygenic and anoxygenic) and N(inf2) fixation were conducted to discern the relationships between photosynthesis, N(inf2) fixation, and environmental factors potentially regulating these processes in microbial mats in a tropical hypersaline lagoon (Salt Pond, San Salvador Island, Bahamas). Major photoautotrophs included cyanobacteria, purple phototrophic bacteria, and diatoms. Chemosystematic photopigments were used as indicators of the relative abundance of mat phototrophs. Experimental manipulations consisted of light and dark incubations of intact mat samples exposed to the photosystem II inhibitor DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea], a dissolved organic carbon source (D-glucose), and normal seawater (37(permil)). Photosynthetic rates were measured by both O(inf2) and (sup14)C methods, and nitrogenase activity (NA) was estimated by the acetylene reduction assay. Moderate reductions in salinity (from 74 to 37(permil)) had no measurable effect on photosynthesis, O(inf2) consumption, or NA. CO(inf2) fixation in DCMU-amended samples was (symbl)25% of that in the control (nonamended) samples and demonstrated photosynthetic activity by anoxygenic phototrophs. NA in DCMU-amended samples, which was consistently higher (by a factor of 2 to 3) than the other (light and dark) treatments, was also attributed to purple phototrophic bacteria. The ecological implication is that N(inf2) fixation by anoxygenic phototrophs (purple phototrophic bacteria and possibly cyanobacteria) may be regulated by the activity of oxygenic phototrophs (cyanobacteria and diatoms). Consortial interactions that enhance the physiological plasticity of the mat community may be a key for optimizing production, N(inf2) fixation, and persistence in these extreme environments.  相似文献   

14.
The present study shows that in the presence of 600 nm light, sulfide acts as a specific inhibitor of photosynthetic electron transport between water and Photosystem II in the cyanobacteria Aphanothece halophytica and Synechococcus 6311 as well as in tobacco chloroplasts. In the presence of 600 nm light sulfied affects the fast fluorescence transients as does a low concentration (10 mM) of hydroxylamine; the fluorescence yield decreases in the presence of either chemical and can be restored by the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In chloroplasts, however, NH2OH, an electron donor at high concentrations (40 mM), relieves the sulfide effect. In the dark, sulfide affects the cyanobacterial fluorescence transients through decrease of oxygen tension. The fluorescence yield increases in a similar pattern to that observed under nitrogen flushing. Upon omission of sulfide in A. halophytica, the characteristic aerobic fluorescence transients return, consistent with the ease of alternation between oxygenic and sulfide-dependent anoxygenic photosynthesis in many cyanobacteria.  相似文献   

15.
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986-2001). The effluent water temperature ranged from 72 to 74 degrees C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial fouling appears with a decrease in the temperature to 62 degrees C and in the sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45 degrees C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5-9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40-32 degrees C, which is 10 to 15 degrees C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40 degrees C. Total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40 degrees C. The rate of methanogenesis did not exceed 1.188 micrograms C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

16.
A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.  相似文献   

17.
Experimental manipulations of a microbial mat community were performed to determine sources of energy and reductant used for nitrogen fixation and to physiologically characterize the responsible diazotrophs. The dominant photolithotrophic members of this community were nonheterocystous cyanobacteria, but other potential nitrogen-fixing microorganisms were also present. Pronounced diel variability in rates of acetylene reduction was observed, with nighttime rates a factor of three to four higher than daytime rates. Acetylene reduction measured at night was dependent upon the occurrence of oxygenic photosynthesis the preceding day; mats incubated in the dark during the daytime reduced acetylene at rates comparable to those of light-incubated mats but were not able to reduce acetylene at the normally high rates the following night. The addition of various exogenous carbon compounds to these dark-incubated mats did not elicit nighttime acetylene reduction. Nighttime acetylene reduction apparently proceeds under anoxic conditions in these mats; the highest rates of acetylene reduction occur late at night. Additions of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of oxygenic photosynthesis) to mats resulted in a pronounced stimulation of acetylene reduction during the day, but acetylene reduction the next night proceeded at greatly reduced rates (relative to untreated mats). This daytime stimulation, under the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-induced anoxic conditions in the experimentally treated mats, was light dependent. These results suggest that nitrogen fixation in these mats may be attributed to the activities of nonheterocystous cyanobacteria utilizing storage products of oxygenic photosynthesis under anoxic conditions at night.  相似文献   

18.
19.
The community composition and ecophysiological features of microbial autotrophic biofilms were studied in Fuente Podrida, a cold sulfur spring located in East Spain. We demonstrated how different ecophysiological strategies, such as resistance and/or utilization of sulfide and oxygen, light adaptation, or resistance to high water flow, allow each of the microorganisms described to efficiently colonize several areas within the environmental gradient. In the zone of the spring constantly influenced by sulfide-rich waters, biofilms were formed by purple bacteria, cyanobacteria, and filamentous colorless sulfur bacteria. Purple bacteria showed higher photosynthetic efficiency per pigment unit than cyanobacteria, although they were dominant only in anoxic areas. Two filamentous cyanobacteria, strain UVFP1 and strain UVFP2, were also abundant in the sulfide-rich area. Whereas the cyanobacterial strain UVFP2 shows a strategy based on the resistance to sulfide of oxygenic photosynthesis, strain UVFP1, additionally, has the capacity for sulfide-driven anoxygenic photosynthesis. Molecular phylogenetic analyses cluster the benthic strain UVFP1 with genus Planktothrix, but with no particular species, whereas UVFP2 does not closely cluster with any known cyanobacterial species. The colorless sulfur bacterium Thiothrix sp. extended throughout the zone in which both sulfide and oxygen were present, exhibiting its capacity for chemolithoautotrophic dark carbon fixation. Downstream from the source, where springwater mixes with well-oxygenated stream water and sulfide disappears, autotrophic biofilms were dominated by diatoms showing higher photosynthetic rates than cyanobacteria and, by a lesser extent, by a sulfide-sensitive cyanobacterium (strain UVFP3) well adapted to low light availability, although in the areas of higher water velocity far from the river shore, the dominance shifted to crust-forming cyanobacteria. Both types of microorganisms were highly sensitive to sulfide impeding them from occupying sulfide-rich areas of the spring. Sulfide, oxygen, light availability, and water velocity appear as the main factors structuring the autotrophic community of Fuente Podrida spring. An erratum to this article is availbale at .  相似文献   

20.
The structure and production characteristics of microbial communities from the Urinskii alkaline hot spring (Buryat Republic, Russia) have been investigated. A distinctive characteristic of this hot spring is the lack of sulfide in the issuing water. The water temperature near the spring vents ranged from 69 to 38.5 degrees C and pH values ranged from 8.8 to 9.2. The total mineralization of water was less than 0.1 g/liter. Temperature has a profound effect on the species composition and biogeochemical processes occurring in the algal-bacterial mats of the Urinskii hot spring. The maximum diversity of the phototrophic community was observed at the temperatures 40 and 46 degrees C. A total of 12 species of cyanobacteria, 4 species of diatoms, and one species of thermophilic anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, have been isolated from mat samples. At temperatures above 40 degrees C, the filamentous cyanobacterium Phormidium laminosum was predominant; its cell number and biomass concentration were 95.1 and 63.9%, respectively. At lower temperatures, the biomass concentrations of the cyanobacterium Oscillatoria limosa and diatoms increased (50.2 and 36.4%, respectively). The cyanobacterium Mastigocladus laminosus, which is normally found in neutral or slightly acidic hydrothermal systems, was detected in microbial communities. As the diatom concentration increases, so does the dry matter concentration in mats, while the content of organic matter decreases. The concentrations of proteins and carbohydrates reached their maximum levels at 45-50 degrees C. The maximum average rate of oxygenic photosynthesis (2.1 g C/m2 day), chlorophyll a content (343.4 mg/m2), and cell number of phototrophic microorganisms were observed at temperatures from 45 to 50 degrees C. The peak mass of bacterial mats (56.75 g/m2) occurred at a temperature of 65-60 degrees C. The maximum biomass concentration of phototrophs (414.63 x 10(-6) g/ml) and the peak rate of anoxygenic photosynthesis [0.42 g C/(m2 day)] were observed at a temperature of 35-40 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号