首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
The human transferrin receptor is post-translationally modified by the covalent attachment of palmitic acid to Cys62 and Cys67 via a thio-ester bond. To investigate the role of the acylation of the transferrin receptor, Cys62 and Cys67 were substituted with serine and alanine residues. The properties of the mutant receptors were compared with wild-type receptors after expression in Chinese hamster ovary cells that lack endogenous transferrin receptors. Rapid incorporation of [3H]palmitate into the wild-type transferrin receptor was observed, but the mutant receptors were found to be palmitoylation-defective. The kinetics of endocytosis and recycling of the wild-type and mutant receptors were compared. It was observed that the rate of endocytosis of the palmitoylation-defective transferrin receptors was significantly greater than the rate measured for the wild-type transferrin receptor. In contrast, the mutation of Cys62 and Cys67 was found to have no significant effect on the rate of transferrin receptor recycling. Consistent with these observations, it was found that cells expressing palmitoylation-defective transferrin receptors exhibited an increased rate of accumulation of [59Fe]diferric transferrin. Together, these data indicate that the palmitoylation of the transferrin receptor is associated with an inhibition of the rate of transferrin receptor endocytosis. Addition of insulin to cultured cells causes an increase in the palmitoylation of cell surface transferrin receptors and a decrease in the rate of transferrin receptor internalization. It was observed that the effect of insulin to inhibit the endocytosis of the acylation-defective [Ala62 Ala67]transferrin receptor was attenuated in comparison with the wild-type receptor. The decreased effectiveness of insulin to inhibit the internalization of the acylation-defective transferrin receptor is consistent with the hypothesis that palmitoylation represents a potential mechanism for the regulation of transferrin receptor endocytosis.  相似文献   

2.
Structural studies of the human transferrin receptor have shown that the molecule is a disulfide-bonded dimer consisting of two identical subunits (Mr = 95,000) which are post-translationally modified by the addition of a fatty acyl moiety. Oligonucleotide site-directed mutagenesis has been used to obtain mutant molecules in which each of the four cysteines, residues 62, 67, 89 and 98, clustered within or adjacent to the membrane-spanning region were modified to serine. By first preparing mutants with only one of these cysteine residues modified to serine and then obtaining additional mutants in which different combinations of two cysteine residues were modified, we have shown that both cysteine 89 and cysteine 98, which are located in the extracellular domain of the receptor, are involved in intermolecular disulfide bonds. Further, we have identified cysteine 62 as the major site of acylation. Each of the mutant molecules is synthesized and transported to the cell surface when the modified human transferrin receptor cDNAs are transiently expressed in simian Cos cells. It should therefore now be possible to design experiments to determine whether these modified receptors bind transferrin normally and mediate iron uptake.  相似文献   

3.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

4.
We have reported recently that the mouse 5-hydroxytryptamine(4a) (5-HT(4(a))) receptor undergoes dynamic palmitoylation (Ponimaskin, E. G., Schmidt, M. F., Heine, M., Bickmeyer, U., and Richter, D. W. (2001) Biochem. J. 353, 627-663). In the present study, conserved cysteine residues 328/329 in the carboxyl terminus of the 5-HT(4(a)) receptor were identified as potential acylation sites. In contrast to other palmitoylated G-protein-coupled receptors, the additional cysteine residue 386 positioned close to the COOH-terminal end of the receptor was also found to be palmitoylated. Using pulse and pulse-chase labeling techniques, we demonstrated that palmitoylation of individual cysteines is a reversible process and that agonist stimulation of the 5-HT(4(a)) receptor independently increases the rate of palmitate turnover for both acylation sites. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(4(a)) receptors were indistinguishable from the wild type in their ability to interact with G(s), to stimulate the adenylyl cyclase activity and to activate cyclic nucleotide-sensitive cation channels after agonist stimulation. The most distinctive finding of the present study was the ability of palmitoylation to modulate the agonist-independent constitutive 5-HT(4(a)) receptor activity. We demonstrated that mutation of the proximal palmitoylation site (Cys(328) --> Ser/Cys(329) --> Ser) significantly increases the capacity of receptors to convert from the inactive (R) to the active (R*) form in the absence of agonist. In contrast, the rate of isomerization from R to R* for the Cys(386) --> Ser as well as for the triple, non-palmitoylated mutant (Cys(328) --> Ser/Cys(329) --> Ser/Cys(386) -->Ser) was similar to that obtained for the wild type.  相似文献   

5.
Treatment of Swiss 3T3 fibroblasts with tumor-promoting phorbol diester or with platelet-derived growth factor caused the phosphorylation of the transferrin receptor by protein kinase C (Ca2+/phospholipid-dependent enzyme) at serine 24 and increased the cell surface expression of the transferrin receptor. The hypothesis that the regulation of transferrin receptor cycling by protein kinase C is causally related to the phosphorylation of the receptor at serine 24 was critically tested. Site-directed mutagenesis of the human transferrin receptor cDNA was used to substitute serine 24 with threonine or alanine residues in order to create phosphorylation defective receptors. Wild-type and mutated transferrin receptors were expressed in Swiss 3T3 fibroblasts using the retrovirus vector pZipNeoSV (X). These receptors were functionally active and caused the receptor-mediated endocytosis of diferric transferrin. Incubation of the fibroblasts with phorbol diester caused the phosphorylation of the wild-type (Ser-24) human transferrin receptor, but this treatment did not result in the phosphorylation of the mutated (Ala-24 and Thr-24) receptors. The cycling of the phosphorylation defective receptors was regulated by phorbol diester and platelet-derived growth factor in a manner similar to that observed for the wild-type receptor. We conclude that the regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts.  相似文献   

6.
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues or introduced a deletion of 36 amino acids by in vitro mutagenesis of a cDNA expression vector for human TR. Upon expression in transfected mouse Ltk- cells, both the wild-type and phosphorylation site mutant receptors mediated transferrin internalization, whereas the truncated receptor did not. These results provide evidence that the cytoplasmic domain, or part of it, is essential for internalization of the TR, but argue against a role for receptor phosphorylation in endocytosis.  相似文献   

7.
Wild-type and mutant human transferrin receptors (TR) have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. By functional studies of the mutant TRs, we have identified the tetrapeptide sequence, YXRF, in the cytoplasmic tail of the receptor as the internalization signal required for high efficiency endocytosis and shown that transplanted internalization signals from the low density lipoprotein receptor (LDLR) and the cation-independent mannose-6-phosphate receptor (Man-6-PR) are able to promote rapid internalization of the human TR. A six-residue LDLR signal, FDNPVY, is required for activity in TR, whereas a four-residue Man-6-PR signal, YSKV, is sufficient. These data indicate that internalization signals are interchangeable self-determined structural motifs and that signals from type I membrane proteins are active in a type II receptor. Putative internalization signals in the cytoplasmic tails of other receptors and membrane proteins can be identified based on the sequence patterns of the LDLR, Man-6-PR, and TR signals. Two such putative four-residue internalization signals, one from the poly-Ig receptor and one from the asialoglycoprotein receptor, were tested for activity by transplantation into TR and were found to promote high efficiency internalization. These results suggest that an exposed tight turn is the conformational motif for high efficiency endocytosis.  相似文献   

8.
《The Journal of cell biology》1994,125(6):1265-1274
By following the intracellular processing of recycling transferrin receptors and the selective sorting of a-2 macroglobulin in chick embryo fibroblasts, we have shown that the concentration of 60 nm diam tubules which surrounds the centrioles represents a distal compartment on the recycling pathway. In migrating cells transferrin receptor tracers can be loaded into this compartment and then chased to the cell surface. When they emerge the recycling transferrin receptors are distributed over the surface of the leading lamella.  相似文献   

9.
Changing a catalytic cysteine into a serine, and vice versa, generally leads to a dramatic decrease in enzymatic efficiency. Except a study done on thiol subtilisin, no extensive study was carried out for determining whether the decrease in activity is due to a low nucleophilicity of the introduced amino acid. In the present study, Cys149 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus was converted into a Ser residue. This leads to a drastic reduction of the kcat value. The rate-limiting step occurs before the hydride transfer step. Selective, but slow, inactivation is observed with specific, structurally different, inhibitors of serine protease. The esterolytic activity of serine mutant towards activated esters is also strongly decreased. The rate-limiting step of the esterase reaction also shifts from deacylation in the wild type to acylation in the mutant. Altogether, these results strongly suggest that the low catalytic efficiency of the Ser mutant is due to a poor nucleophilicity of the hydroxyl serine group within the active site of the enzyme. The fact that (1) the apo --> holo transition does not change esterolytic and inactivating efficiencies, and (2) Ser149 Asn176 double mutant exhibits the same chemical reactivity and esterolytic catalytic efficiency compared to the Ser149 single mutant indicates that the serine residue is not subject to His176 general base catalysis. A linear relationship between the catalytic dehydrogenase rate, the kcat/KM for esterolysis, and the concentration of OH- is observed, thus supporting the alcoholate entity as the attacking reactive species. Collectively this study shows that the active site environment of GAPDH is not adapted to increase the nucleophilicity of a serine residue. This is discussed in relation to what is known about Ser and Cys protease active sites.  相似文献   

10.
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.  相似文献   

11.
Wild-type human transferrin receptor (hTfR), like endogenous canine receptor, is expressed almost exclusively (97%) at the basolateral membrane of transfected Madin-Darbey canine kidney (MDCK) cells. We investigated the role of two distinct features of the hTfR cytoplasmic domain, namely the endocytic signal and the unique phosphorylation site, in polarized cell surface delivery. Basolateral location was not altered by point mutation of Ser24-->Ala24, indicating that phosphorylation is not involved in vectorial sorting of hTfR. The steady state distribution of hTfR was partially affected by a deletion of 36 cytoplasmic residues encompassing the internalization sequence. However, 80% of the receptors were still basolateral. As assessed by pulse-chase experiments in combination with biotinylation, newly synthesized wild-type and deletion mutant receptors were directly sorted to the domain of their steady state residency. Although both receptors could bind human transferrin, endocytosis of the deletion mutant was strongly impaired at either surface. These data indicate that the predominant basolateral targeting signal of hTfR is independent of the internalization sequence.  相似文献   

12.
The mechanism of iron uptake and the changes which occur during cellular development of muscle cells were investigated using primary cultures of chick embryo breast muscle. Replicating presumptive myoblasts were examined in exponential growth and after growth had plateaued. These were compared to the terminally differentiated cell type, the myotube. All cells, regardless of the state of growth or differentiation, had specific receptors for transferrin. Presumptive myoblasts in exponential growth had more transferrin receptors (3.78 +/- 0.24 X 10(10) receptors/micrograms DNA) than when division had ceased (1.70 +/- 0.14 X 10(10) receptors/micrograms DNA), while myotubes had 3.80 +/- 0.26 X 10(10) receptors/micrograms DNA. Iron uptake occurred by receptor-mediated endocytosis of transferrin. While iron was accumulated by the cells, apotransferrin was released in an undegraded form. There was a close correlation between the molar rates of endocytosis of transferrin and iron. Maximum rates of iron uptake were significantly higher in myotubes than in presumptive myoblasts in either exponential growth or after growth had plateaued. There were two rates of exocytosis of transferrin, implying the existence of two intracellular pathways for transferrin. These experiments demonstrate that iron uptake by muscle cells in culture occurs by receptor-mediated endocytosis of transferrin and that transferrin receptor numbers and the kinetics of transferrin and iron uptake vary with development of the cells.  相似文献   

13.
The delta-opioid receptor (DOR) can undergo proteolytic down-regulation by endocytosis of receptors followed by sorting of internalized receptors to lysosomes. Although phosphorylation of the receptor is thought to play an important role in controlling receptor down-regulation, previous studies disagree on whether phosphorylation is actually required for the agonist-induced endocytosis of opioid receptors. Furthermore, no previous studies have determined whether phosphorylation is required for subsequent sorting of internalized receptors to lysosomes. We have addressed these questions by examining the endocytic trafficking of a series of mutant versions of DOR expressed in stably transfected HEK 293 cells. Our results confirm that phosphorylation is not required for agonist-induced endocytosis of truncated mutant receptors that lack the distal carboxyl-terminal cytoplasmic domain containing sites of regulatory phosphorylation. However, phosphorylation is required for endocytosis of full-length receptors. Mutation of all serine/threonine residues located in the distal carboxyl-terminal tail domain of the full-length receptor to alanine creates functional mutant receptors that exhibit no detectable agonist-induced endocytosis. Substitution of these residues with aspartate restores the ability of mutant receptors to undergo agonist-induced endocytosis. Studies using green fluorescent protein-tagged versions of arrestin-3 suggest that the distal tail domain, when not phosphorylated, inhibits receptor-mediated recruitment of beta-arrestins to the plasma membrane. Biochemical and radioligand binding studies indicate that, after endocytosis occurs, phosphorylation-defective mutant receptors traffic to lysosomes with similar kinetics as wild type receptors. We conclude that phosphorylation controls endocytic trafficking of opioid receptors primarily by regulating a "brake" mechanism that prevents endocytosis of full-length receptors in the absence of phosphorylation. After endocytosis occurs, subsequent steps of membrane trafficking mediating sorting and transport to lysosomes do not require receptor phosphorylation.  相似文献   

14.
We constructed, by site-directed mutagenesis, a mutant pullulanase gene in which the cysteine residue in a pentapeptide sequence, Leu16-Leu-Ser-Gly-Cys20 within the NH2-terminal region of pullulanase from Klebsiella aerogenes, is replaced by serine (Ser20). The modification, processing, and subcellular localization of the mutant pullulanase were studied. Labeling studies with [3H]palmitate and immunoprecipitation with mouse antiserum raised against pullulanase showed that the wild form of both the extracellular and intracellular pullulanases contained lipids, whereas the mutant enzyme was not modified with lipids. Only the Cys20 was modified with glyceryl lipids. The bulk of the mutant pullulanase was located in the periplasm, but a portion of the unmodified, mutant pullulanase was secreted into the medium. Mutant pullulanases from the extracellular and the periplasm were purified and their NH2-terminal sequences were determined. Both the mutant pullulanases were cleaved between residues of Ser13 and Leu14 which is 6-amino acid residues upstream of the lipid modified pullulanase cleavage site. This new cleavage was resistant to globomycin, an inhibitor of the prolipoprotein signal peptidase of Escherichia coli. These results indicate that the pentapeptide sequence plays an important role in maturation and translocation of pullulanase in K. aerogenes. However, the modification of pullulanase with lipids seems to be not essential for export of the enzyme across the outer membrane.  相似文献   

15.
Transferrin receptors promote the formation of clathrin lattices   总被引:19,自引:0,他引:19  
Gold conjugates have been used to quantitate human transferrin receptors (hTfnRs) on transfected chick embryo fibroblasts. No relationship could be found between the number of hTfnRs and the number of clathrin-coated pits. However, hTfnRs are also associated with flat clathrin lattices that lie outside invaginated pits. With increasing levels of receptor expression, the density of hTfnRs within flat lattices increases, and at the highest levels of expression the total area of flat lattice increases up to 3-fold. These results show that increased receptor numbers can promote clathrin lattice growth and suggest that the recruitment of receptors like hTfnRs is an essential step in lattice construction. We conclude that the process of invagination, which gives rise to coated pits, is regulated separately.  相似文献   

16.
Human CuZn superoxide dismutase (HSOD) has two free cysteines: a buried cysteine (Cys6) located in a beta-strand, and a solvent accessible cysteine (Cys111) located in a loop region. The highly homologous bovine enzyme (BSOD) has a single buried Cys6 residue. Cys6 residues in HSOD and BSOD were replaced by alanine and Cys111 residues in HSOD by serine. The mutant enzymes were expressed and purified from yeast and had normal specific activities. The relative resistance of the purified proteins to irreversible inactivation of enzymatic activity by heating at 70 degrees C was HSOD Ala6 Ser111 greater than BSOD Ala6 Ser109 greater than BSOD Cys6 Ser109 (wild type) greater than HSOD Ala6 Cys111 greater than HSOD Cys6 Ser111 greater than HSOD Cys111 (wild type). In all cases, removal of a free cysteine residue increased thermostability.  相似文献   

17.
The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist-triggered internalization. The observation that internalization and acute shutoff were dissociated by mutation of PAR1 suggests that there are quantitative or qualitative differences in the requirements or mechanisms for these two processes.  相似文献   

18.
We have investigated the role of phosphorylation in the endocytosis of the human transferrin receptor (TR) by replacing its phosphorylation site, Ser24, with Ala through site-directed mutagenesis of the TR cDNA. The TR Ala24 mutant expressed in mouse 3T3 cells was not phosphorylated, even following stimulation of protein kinase C by phorbol ester. However, in spite of this defect the mutant was efficiently endocytosed and recycled back to the plasma membrane with kinetics similar to those of TR and a control mutant TR Ala63. Thus, these results confirm earlier results by Davis et al. (1986, J. Biol. Chem., 261-9034-9041) that Ser24 of human TR is the phosphorylation site for protein kinase C but do not support a role of this modification as a signal for TR endocytosis and recycling.  相似文献   

19.
Ha-Ras is modified by isoprenoid on Cys(186) and by reversibly attached palmitates at Cys(181) and Cys(184). Ha-Ras loses 90% of its transforming activity if Cys(181) and Cys(184) are changed to serines, implying that palmitates make important contributions to oncogenicity. However, study of dynamic acylation is hampered by an absence of methods for acutely manipulating Ha-Ras palmitoylation in living cells. S-nitrosocysteine (SNC) and, to a more modest extent, S-nitrosoglutathione were found to rapidly increase [(3)H]palmitate incorporation into cellular or oncogenic Ha-Ras in NIH 3T3 cells. In contrast, SNC decreased [(3)H]palmitate labeling of the transferrin receptor and caveolin. SNC accelerated loss of [(3)H]palmitate from Ha-Ras, implying that SNC stimulated deacylation and permitted subsequent reacylation of Ha-Ras. SNC also decreased Ha-Ras GTP binding and inhibited phosphorylation of the kinases ERK1 and ERK2 in NIH 3T3 cells. Thus, SNC altered two important properties of Ha-Ras activation state and lipidation. These results identify SNC as a new tool for manipulating palmitate turnover on Ha-Ras and for studying requirements of repalmitoylation and the relationship between palmitate cycling, membrane localization, and signaling by Ha-Ras.  相似文献   

20.
We have examined whether the two cysteine residues (Cys30 and Cys34) in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor are palmitoylated via thioesters and whether these residues influence the biologic function of the receptor. To do this, mouse L cells expressing wild-type and mutant receptors were analyzed by metabolic labeling with [3H]palmitate, immunoprecipitation, and SDS- PAGE. Both Cys30 and Cys34 were found to be sites of palmitoylation and together they accounted for the total palmitoylation of the receptor. The palmitate rapidly turned over with a half-life of approximately 2 h compared to a half-life of greater than 40 h for the protein. Mutation of Cys34 to Ala resulted in the gradual accumulation of the receptor in dense lysosomes and the total loss of cathepsin D sorting function in the Golgi. A Cys30 to Ala mutation had no biologic consequences, showing the importance of Cys34. Mutation of amino acids 35-39 to alanines impaired palmitoylation of Cys30 and Cys34 and resulted in abnormal receptor trafficking to lysosomes and loss of cathepsin D sorting. These data suggest that palmitoylation of Cys30 and Cys34 leads to anchoring of this region of the cytoplasmic tail to the lipid bilayer. Anchoring via Cys34 is essential for the normal trafficking and lysosomal enzyme sorting function of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号