首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ketamine hydrochloride (KH) and a 5:1 combination of KH and xylazine hydrochloride (XH) were used successfully to immobilize short-tailed weasels (Mustela erminea) and American martens (Martes americana), respectively. Four adult male martens were intramuscularly injected with 30 to 82 mg/kg KH and 8.0 to 16.4 mg/kg XH. Three adult male short-tailed weasels were intramuscularly injected with 20.8 to 42.1 mg/kg KH. Mean (+/- SE) induction times for martens and short-tailed weasels were 1.8 +/- 0.2 min and 46 +/- 4.1 sec, respectively; recovery times were 100.4 +/- 19.3 min and 97.9 +/- 6.3 min, respectively. Heart rate was relatively constant among martens; however, respiration varied widely (21 to 122 breaths per minute). Marten body temperature decreased between 0 and 20 min post-recumbency. Short-tailed weasel heart rate and respiration decreased in response to sedation until slightly before arousal. Body temperature stabilized by 20 min post-recumbency. Two short-tailed weasels tremored slightly within 10 min of arousal. I conclude that KH and KH/XH are safe immobilizing agents for martens and short-tailed weasels, respectively.  相似文献   

2.
Eight captive wapiti (Cervus elaphus nelsoni) were injected with xylazine hydrochloride on two occasions during March and April 1984. Animals were grouped into a modified Latin square design and were given either successive injections of yohimbine hydrochloride and 4-aminopyridine (4-AP) to antagonize the sedative effects of xylazine hydrochloride or permitted an unantagonized recovery. Induction times ranged from 3 to 26 min with excited and wild animals requiring a supplementary dose. Time until walking was significantly (P less than 0.005) shorter in the group given successive injections (given i.v.) of the reversal drugs yohimbine hydrochloride (0.15 mg/kg) and 4-AP (0.30 mg/kg) than those animals during unantagonized recoveries. Marked increase in heart rate and respiratory rate were observed in animals within 3 min after successive injections of yohimbine hydrochloride and 4-AP. There was no occurrence of convulsions and animals did not relapse to profound sedation. Slight muscle tremors were observed in one animal which received a dose of 0.35 mg/kg of 4-AP. This drug combination can reduce markedly the duration of recovery from xylazine hydrochloride-induced sedation in wapiti.  相似文献   

3.
October 2001 to January 2002, captive free-ranging white-tailed deer (Odocoileus virginianus) were immobilized with a combination of carfentanil citrate and xylazine hydrochloride. From this study, we selected a dose of carfentanil/xylazine for the purpose of comparing immobilization parameters and physiologic effects with those of a combination of tiletamine and zolazepam (Telazol) and xylazine. Animals were initially given intramuscular injections of 10 mg xylazine and one of four doses of carfentanil (i.e., 0.5, 1.0, 1.5, and 2.0 mg). A carfentanil dose of 1.2 mg (x +/- SD = 23.5 +/- 3.2 microg/kg) and 10 mg xylazine (0.2 +/- 0.03 mg/kg) were selected, based on induction times and previously published reports, to compare with a combination of 230 mg of Telazol (4.5 +/- 0.6 mg/kg) and 120 mg xylazine (2.3 +/- 0.3 mg/kg). Time to first observable drug effects and to induction were significantly longer for deer treated with carfentanil/xylazine than with Telazol/xylazine (P < 0.01). Hyperthermia was common in deer immobilized with carfentanil/xylazine, but heart rate, respiration rate, and hemoglobin saturation were within acceptable levels. Degree of anesthesia of deer immobilized with Telazol/xylazine was superior to deer immobilized with carfentanil/xylazine. The combination of 120 mg of naltrexone hydrochloride and 6.5 mg of yohimbine hydrochloride provided rapid and complete reversal (1.9 +/- 1.1 min) of carfentanil/xylazine immobilization. Animals immobilized with Telazol/xylazine had long recovery times with occasional resedation after antagonism with 6.5 mg of yohimbine. The combination of carfentanil and xylazine at the doses tested did not provide reliable induction or immobilization of white-tailel (leer even though drug reversal was rapid and safe using naltrexone and yohimbine.  相似文献   

4.
Captive gray wolves (Canis lupus) were immobilized (loss of consciousness) with 2.0 mg/kg xylazine hydrochloride (XYL) and 0.4 mg/kg butorphanol tartrate (BUT) administered intramuscularly. Induction time was 11.8 +/- 0.8 min (mean +/- SE). Immobilization resulted in bradycardia, respiratory depression, and normotension. Fifteen min after induction, six wolves were given either 0.05 mg/kg naloxone hydrochloride (NAL) and 0.125 or 0.250 mg/kg yohimbine hydrochloride (YOH), or an equal volume of saline (control) intravenously. Antagonism resulted in shortened recovery times compared to control animals (P less than 0.03); there was no difference in recovery times between the YOH doses (P greater than 0.05). Antagonism caused increases in heart rate (HR) and respiratory rate (RR), but no changes in MABP. Eight other wolves were similarly immobilized, but given only NAL. This resulted in partial antagonism with the animals appearing to be sedated with XYL only. Three wolves given only 0.4 mg/kg BUT assumed a state described as "apathetic sedation." Three other wolves sedated with only 2.0 mg/kg XYL showed a profound sedation characterized by recumbency, bradycardia and shallow, but regular, respiration. This study demonstrated that (1) BUT and XYL together, but not separately, can completely immobilize wolves, (2) this combination can be rapidly antagonized by NAL and YOH, and (3) there appeared to be no adverse cardiopulmonary reactions to any of the drugs used.  相似文献   

5.
Gray wolves (Canis lupus) were immobilized with 0.5 mg/kg xylazine plus 7.5 micrograms/kg of either sufentanil (n = 8), etorphine (n = 8), or carfentanil (n = 2). Drug doses used in this study were selected to provide consistency for comparison and are not recommended doses for effective immobilization of wolves. Induction times were similar among groups (11.9 +/- 1.0 min). Thirty min after induction, wolves were given either 0.5 mg/kg naloxone hydrochloride plus 0.15 mg/kg yohimbine hydrochloride or saline only intravenously. Arousal times for wolves given naloxone and yohimbine (1.2 +/- 0.1 min) were shorter than wolves given saline (35.5 +/- 6.4 min). Respiratory rates were similar among the three drug groups (6.9 +/- 1.0 breaths/min). One animal given sufentanil then saline was found dead 108 min after induction. Presumptive diagnosis was renarcotization and hypothermia. Results indicated that sufentanil is an effective opioid immobilizing agent for gray wolves.  相似文献   

6.
A combination of 100 mg ketamine hydrochloride (KH) and 20 mg xylazine hydrochloride (XH) was used to immobilize fishers (Martes pennanti). Four adult males were intramuscularly injected a total of five times at dosages between 22.4 to 29.0 mg/kg KH and 4.1 to 6.6 mg/kg XH. Mean (+/- SE) induction time and arousal time were 3.3 +/- 0.5 min and 76.8 +/- 12.1 min, respectively. Respiration, heart rate, and body temperature in response to sedation appeared normal. A 5:1 mixture of KH-XH appears to be a safe immobilizing agent for fishers.  相似文献   

7.
Eleven adult ferrets (Mustela putorius furo) were anesthetized with ketamine hydrochloride (25 mg/kg, IM) and xylazine hydrochloride (2 mg/kg, IM). Fifteen minutes post-ketamine/xylazine injection, ferrets were treated with yohimbine hydrochloride at a dose of 0.5 mg/kg, or an equal volume of physiologic saline, intramuscularly. Each ferret served as its own control by randomly receiving both treatments with a minimum interval of 2 weeks between treatments on any one ferret. At 15 minutes post-ketamine/xylazine injection, mean heart rate measurements for both treatment groups were 27% less than the mean heart rate measurement reported for unanesthetized ferrets. Intramuscular administration of yohimbine antagonized the ketamine/xylazine induced bradycardia in 10 of the 11 ferrets, (p = 0.0001). In yohimbine treated ferrets, an increase in mean heart rate measurement was noted 5 minutes after the intramuscular administration of yohimbine, and followed, over the next 15 minutes, by a progressive increase in mean heart rate. However, a corresponding decrease in mean heart rate measurement was observed in saline treated controls. Fifteen minutes after the injection of yohimbine, the mean heart rate measurement of yohimbine treated animals had increased to 194 beats per minute. This mean heart rate measurement is nearly 30% greater than the mean heart rate of 150 beats per minute measured at 15 minutes post-saline injection in saline treated controls. Also, yohimbine treatment significantly reduced duration of recumbency in 10 of 11 ferrets (p = 0.0001). Mean duration of recumbency for yohimbine treated ferrets was 41 +/- 9.7 minutes, whereas mean duration of recumbency for saline treated ferrets was determined to be 80 +/- 11.4 minutes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The mean time to initial reversal response (MTIRR) and the mean time to perching (MTP) were measured in 34 raptors sedated with xylazine hydrochloride with dosages ranging from 1.0 to 20 mg/kg intravenously (i.v.) and 2.5 to 20.0 mg/kg intramuscularly (i.m.). Yohimbine hydrochloride, given i.v. (0.2 mg/kg), 30 min after the injection of the xylazine, shortened the MTIRR and MTP compared to the controls. No adverse effects were noted due to the use of yohimbine. Yohimbine appeared to be a safe and effective antagonist for xylazine sedation in raptors.  相似文献   

9.
Adult wolves (Canis lupus) were immobilized with 6.6 mg/kg ketamine hydrochloride (KET) and 2.2 mg/kg xylazine hydrochloride (XYL) administered intramuscularly. Induction time was 4.6 +/- 0.3 min (mean +/- SE). Immobilization resulted in significant bradycardia and hypertension (P less than 0.05). Twenty min after induction, the wolves were given 0.05-0.60 mg/kg yohimbine hydrochloride (YOH). Yohimbine given intravenously produced dose-related increases in heart rate (HR) with doses greater than 0.15 mg/kg resulting in extreme tachycardia (greater than 300 bpm). All doses of YOH caused a temporary decrease in mean arterial blood pressure (MABP) with some individual animals manifesting profound hypotension (less than 30 torr) at doses greater than 0.15 mg/kg. Increasing the dose of YOH above 0.15 mg/kg did not significantly decrease either arousal or ambulation times. Administering YOH at 40 or 60 min after induction resulted in decreased arousal and ambulation times. Stimulation by weighing and taking repeated blood samples during anesthesia did not shorten arousal times. We recommend that wolves immobilized with XYL-KET be antagonized with doses of YOH less than 0.15 mg/kg.  相似文献   

10.
A combination of tiletamine-zolazepam/xylazine (TZ/X) is effective in the chemical immobilization of white-tailed deer (Odocoileus virginianus); however, the lengthy duration of immobilization may limit its usefulness. From October to November 2002, 21 captive female deer were assigned randomly to an alpha(2) antagonist treatment to reverse xylazine-induced sedation (seven does per group). All deer were given 220 mg of TZ (4.5+/-0.4 mg/kg) and 110 mg of X (2.2+/-0.2 mg/kg) intramuscularly (IM). Antagonist treatments were either 200 mg of tolazoline (4.0+/-0.4 mg/kg), 11 mg of atipamezole (0.23+/-0.02 mg/kg), or 15 mg of yohimbine (0.30+/-0.02 mg/kg) injected, half intravenously and half subcutaneously, 45 min after the IM TZ/X injection. In addition, 10 other deer (five per group) were immobilized as before and then given tolazoline (200 mg) after 45 min, with either a carrier (dimethyl sulfoxide [DMSO]) or carrier (DMSO) plus flumazenil (5 mg) to reverse the zolazepam portion of TZ. Mean times from antagonist injection until a deer raised its head were different for alpha(2) antagonist treatments (P=0.02). Times were longer for yohimbine (62.3+/-42.7 min) than for either atipamezole (24.3+/-17.1 min) or tolazoline (21.3+/-14.3 min). Mean times from antagonist injection until standing were not different (P=0.15) among yohimbine (112.0+/-56.4 min), atipamezole (89.7+/-62.8 min), or tolazoline (52.6+/-37.2 min). A sedation score based on behavioral criteria was assigned to each deer every 30 min for 5 hr. On the basis of sedation scores, tolazoline resulted in a faster and more complete reversal of immobilization. Flumazenil treatment did not affect recovery.  相似文献   

11.
The effect of combinations of injectable anesthetics on mean arterial blood pressure, blood gases, heart rate and respiration of the guinea pig (NIH Outbred strain) was investigated. After a 30 minute period in which baseline resting cardiorespiratory measurements were obtained, five groups of six pigmented animals having indwelling carotid cannulas were anesthetized with (a) ketamine hydrochloride (30 mg/kg, im)/xylazine (5 mg/kg, im); (b) sodium pentobarbital (15 mg/kg, ip)/fentanyl-droperidol (0.4 mg/kg, im); (c) diazepam (5mg/kg, ip)/fentanyl citrate (0.32 mg/kg, im); (d) diazepam (5 mg/kg, ip)/alphaxalone-alphadolone acetate (45 mg/kg, im); or (e) 1% alpha-chloralose-40% urethane (0.8 ml/100g, ip). Animals were not respirated artificially and no supplemental doses of anesthetic were given. Resting blood pressure in awake animals was measured over time for as long as cannulas remained patent (109 measurements). Mean resting blood pressure, for this strain of guinea pigs, was determined to be 53.1 +/- 4.2 mmHg. There was no indication that mean arterial blood pressure changed with age in animals varying in weight from 215 g to 550 g. Under diazepam/fentanyl, blood pressure rose significantly above resting level to a mean of 71.1 +/- 6.1 mmHg. With the other four combinations, blood pressure stabilized near, but below pre-anesthesia levels (ketamine/xylazine 47.1 +/- 6.8 mmHg; pentobarbital/fentanyl-droperidol, 46.9 +/- 3.2 mmHg; diazepam/alphaxalone-alphadolone, 47.8 +/- 4.8 mmHg; chloralose-urethane, 51.0 +/- 1.2 mmHg). Under diazepam/alphaxalone-alphadolone and chloralose-urethane, respiration was depressed and blood gas levels deviated from normal to the extent that artificial ventilation would be necessary to maintain an adequate physiological state.  相似文献   

12.
Thirty seven southern elephant seals (Mirounga leonina) were singularly or repeatedly immobilized with combinations of ketamine hydrochloride (HCl) and xylazine HCl or ketamine HCl and diazepam. Atropine sulphate was included in the drug combinations. To permit experimental procedures the seals were immobilized for periods of 30-330 min. The mean induction dose of ketamine HCl was 8.71 +/- 0.25 mg/kg (mean +/- SE). The mean induction time was 16.02 +/- 2.62 min. For the elephant seals immobilized for periods in excess of 180 min, the mean dose of ketamine HCl used per hr was 3.31 +/- 0.13 mg/kg/hr and the mean dose of ketamine HCl used per hr postinduction was 1.31 +/- 0.15 mg/kg/hr. The mean dose of diazepam used was 0.09 +/- 0.01 mg/kg and the mean dose of xylazine HCl was 0.41 +/- 0.01 mg/kg. Elephant seals were weighed on 20 occasions (weight range: 897-1,932 kg) and the relationship between standard length and weight was found to be: Weight = 9.98 length - 2,317.63 (r2 = 0.724). Adverse reactions to seals immobilized only once or twice were not observed. Two seals immobilized on three occasions developed abscesses at the site of injection.  相似文献   

13.
The mean time to arousal (MTA), the mean time to sternal recumbency (MTSR) and the mean time to walking (MTW) were measured in 10 adult guineafowl (Numida meleagris) immobilized with a combination of xylazine hydrochloride (1 mg/kg) and ketamine hydrochloride (25 mg/kg). Yohimbine hydrochloride, given intravenously (1 mg/kg) at 40 min after the injection of the xylazine-ketamine, significantly shortened the MTA, the MTSR and the MTW compared to saline controls. Increasing the dosage of yohimbine to 2.5 mg/kg did not shorten recovery when compared to the lower dosage. No adverse effects were noted at either dosage of yohimbine. Yohimbine appeared to be a safe and effective antagonist of xylazine-ketamine immobilization in guineafowl and may prove useful in other avian species to produce more rapid recovery from xylazine-ketamine immobilization, xylazine sedation or xylazine overdosage.  相似文献   

14.
We compared the efficiency of succinylcholine chloride, xylazine hydrochloride and carfentanil/xylazine mixtures in immobilizing 364 free-ranging moose (Alces alces) between 1987 and 1997 in Québec (Canada). With succinylcholine chloride (0.070, 0.062, 0.051 mg/kg of estimated body weight for calves, juveniles and adults), 63% of the 252 immobilization attempts led to complete immobilization and marking, whereas 7% of the darted animals died of respiratory paralysis during handling. The moose took an average of 13 min to lay down after darting (down time). Injection of xylazine (3.67-4.22 mg/kg) permitted sedation (the animal laid down but got up again when approached) or complete immobilization in 78% of the 40 darted adult moose, the mean down time being 8.7 min. No mortality was noted with this drug but 58% of the marked animals were only sedated. The use of RX821002A (0.058 mg/kg) as an antagonist, permitted a mean recovery time of 2.8 min after intravenous injection. With the carfentanil/xylazine mixtures (0.0071 and 0.181 mg/kg), 96% of the immobilization trials (n = 72) led to complete (88%) or partial (8%) immobilization, but 6% of the moose died several days after capture. The mean down time was 6.6 min, and injection of naltrexone (0.709 mg/kg) antagonized the effect of the immobilizing agent within 3.7 min. The respiratory rate was higher (P < 0.05) among moose immobilized with xylazine (35/min) than among those immobilized with carfentanil/xylazine mixtures (19/min) but this variation could be related to a longer pursuit time (z = 3.60; P < 0.01) and higher stress levels during handling. Rectal temperature also was higher with xylazine but the difference was small (39.7 vs. 39.3, P = 0.03) and did not differ significantly between the sexes (P > 0.05). Considering loss of materials and helicopter flight time due to non-successful marking trials, carfentanil/xylazine mixtures were the least expensive ($333 Cdn/animal).  相似文献   

15.
A mixture of 15 mg/kg body weight ketamine hydrochloride (KE) and 1.5 mg/kg body weight xylazine hydrochloride (XY) was used to successfully immobilize free-ranging brown palm civets (Paradoxurus jerdoni). Between March 1998 and June 1999, 10 immobilizations of 7 individuals were carried out in tropical rainforests of the Kalakad-Mundanthurai Tiger Reserve (India). Five males and two females were captured in Havahart live traps, using banana as bait. The mean dosage for the animals, whose weight (mean +/- SD) was 2.4 kg +/- 0.8 was 36.0 +/- 11.0 mg KE and 3.7 +/- 1.1 mg XY, administered intramuscularly. Mean time for lateral recumbency was 6.1 +/- 3.78 min (n = 10) and the mean time taken for complete recovery was 84.9 +/- 28.8 min (n = 9). Recovery was gradual and no fatalities or injuries occurred during the operation. The drug combination used was effective and has the potential for immobilizing other viverrids.  相似文献   

16.
From January 1999 to April 2002, 14 free-ranging elk were darted with a mixture of Telazol reconstituted with xylazine hydrochloride (HCl) in a forested habitat in southwestern Oklahoma and north-central Arkansas. Elk were darted from ground blinds, tree stands, or a vehicle at distances of 14-46 m and were recovered 37-274 m from the dart site. Elk were located using radiotelemetry with 3-cc disposable Pneu-dart transmitter darts. Mean+/-SD dose of Telazol and xylazine HCl was 590+/-192 mg/ml and 276+/-153 mg/ml, respectively, and mean time to standing after injection of reversal agent was 27 min (range: 1-65 min). The combination of Telazol and xylazine HCl successfully immobilized free-ranging elk, and transmitter-equipped darts permitted successful location of sedated elk by two people in areas of dense forest cover. The dose required to sedate elk appeared to vary depending on physiology and behavior, but no drug-induced mortality occurred despite the wide variance in the doses administered. We recommend 500 mg Telazol reconstituted with 300 mg xylazine HCl as an initial dose for a >or=200 kg elk. If needed to achieve full sedation, up to 3 additional ml of the mixture may be administered without adverse effects.  相似文献   

17.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

18.
Xylazine hydrochloride was used to immobilize 124 Rocky Mountain bighorn sheep (Ovis canadensis canadensis) between 1983 and 1988. Doses of xylazine for free-ranging lambs ranged from 70 to 130 mg with amounts increasing with lamb age. Average doses for 11 free-ranging adult males and 21 adult females darted from the ground were (means +/- SE) 363 +/- 16 and 251 +/- 7 mg, respectively. Adult females captured in "Stevenson's " box traps (n = 7) could be immobilized with significantly (P less than 0.001) less xylazine (93 +/- 9 mg) than free-ranging females but had similar induction times. Long recovery times associated with xylazine immobilization were eliminated with the intravenous administration of idazoxan (RX 781094) at an approximate dosage of 0.1 mg/kg. Eighteen sheep given idazoxan appeared fully recovered within 3 min of injection (means +/- SE = 1.2 +/- 0.2 min). Four mortalities (three lambs, one yearling male) (3% of total) occurred before idazoxan was available for trial.  相似文献   

19.
Xylazine hydrochloride was used as the sole immobilizing agent in moose and caribou. The animals were free-ranging and immobilization was accomplished from a helicopter using powered darts. Following a period of immobilization during which radiotelemetry collars were fitted, the animals were revived using idazoxan (RX 781094) or its methoxy analogue RX 821002. Xylazine was administered at dose rates of approximately 3.0 mg/kg and 5.0 mg/kg to the moose and caribou, respectively. Moose received 430 +/- 27 mg of xylazine and a mean dose of 10 mg idazoxan (RX 781094). Caribou received 485 +/- 30 mg xylazine and a mean dose of 4 mg idazoxan (RX 821002). This technique gave adequate immobilization with rapid recovery of consciousness in both species.  相似文献   

20.
Twenty-six free-ranging North American bison (Bison bison) (22 adult bulls, one yearling male and three adult females) were immobilized using a combination of carfentanil and xylazine. For carfentanil the dose range (mean +/- SD) was 1.8-5.0 micrograms/kg (2.4 +/- 0.7 micrograms/kg) and for xylazine 0.004-0.125 mg/kg (0.07 +/- 0.03 mg/kg). Induction time (mean +/- SE) was 14.2 +/- 2.9 min (median 8 min), while the total mean reversal time after administration of a narcotic antagonist was 9.0 +/- 1.4 min (median 8 min). Only one animal that received the highest initial dose of carfentanil (2.5 mg) showed evidence of becoming "re-narcotized." Five animals required two or more doses of carfentanil before becoming immobilized. Overall, small volumes of drug used (mean = 0.62 ml for carfentanil, 0.53 ml for xylazine) enabled the use of 1 to 2 ml darts, increasing both accuracy and impact safety. Darting success approached 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号