首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.  相似文献   

3.
Genetic analysis has indicated that the system II pathway for c-type cytochrome biogenesis in Bordetella pertussis requires at least four biogenesis proteins (CcsB, CcsA, DsbD and CcsX). In this study, the eight genes (ccmA-H) associated with the system I pathway in Escherichia coli were deleted. Using B. pertussis cytochrome c4 as a reporter for cytochromes c assembly, it is demonstrated that a single fused ccsBA polypeptide can replace the function of the eight system I genes in E. coli. Thus, the CcsB and CcsA membrane complex of system II is likely to possess the haem delivery and periplasmic cytochrome c-haem ligation functions. Using recombinant system II and system I, both under control of IPTG, we have begun to study the capabilities and characteristics of each system in the same organism (E. coli). The ferrochelatase inhibitor N-methylprotoporphyrin was used to modulate haem levels in vivo and it is shown that system I can use endogenous haem at much lower levels than system II. Additionally, while system I encodes a covalently bound haem chaperone (holo-CcmE), no covalent intermediate has been found in system II. It is shown that this allows system I to use holo-CcmE as a haem reservoir, a capability system II does not possess.  相似文献   

4.
High levels of glycerol significantly inhibit cell growth and 1,3-propanediol (1,3-PD) production in anaerobic glycerol fermentation by genetically engineered Escherichia coli (E. coli) strains expressing genes from the Klebsiella pneumoniae dha (K.pneumoniae) regulon. We have previously demonstrated that 1,3-PD production by the engineered E. coli can be improved by reducing the accumulation of methylglyoxal. This study focuses on investigation of another lesser-known metabolite in the pathways related to 1,3-PD production-glycerol-3-phosphate (G3P). When grown anaerobically on glycerol in the absence of an exogenous acceptor, the engineered E. coli strains have intracellular G3P levels that are significantly higher than those in K. pneumoniae, a natural 1,3-PD producer. Furthermore, in the engineered E. coli strains, the G3P levels increase with increasing glycerol concentrations, whereas, in K. pneumoniae, the concentrations of G3P remain relatively constant. Addition of fumarate, which can stimulate activity of anaerobic G3P dehydrogenase, into the fermentation medium led to a greater than 30-fold increase in the specific activity of anaerobic G3P dehydrogenase and a significant decrease in concentrations of intracellular G3P and resulted in better cell growth and an improved production of 1,3-PD. This indicates that the low activity of G3P dehydrogenase in the absence of an exogenous electron acceptor is one of the reasons for G3P accumulation. In addition, spent media from E.coli Lin61, a glycerol kinase (responsible for conversion of glycerol to G3P) mutant, contains greatly decreased concentrations of G3P and shows improved production of 1,3-PD (by 2.5-fold), when compared to media from its parent strain E. coli K10. This further suggests that G3P accumulation is one of the reasons for the inhibition of 1,3-PD production during anaerobic fermentation.  相似文献   

5.
Cystathionine beta-synthase (CBS), a key enzyme in the metabolism of homocysteine, has previously been shown to require a heme co-factor for maximal activity. However, the biochemical function of the CBS heme is not well defined. Here, we show that expression of human CBS in heme-deficient strains of Saccharomyces cerevisiae and Escherichia coli results in production of an enzyme that is misfolded and degraded. Addition of exogenous heme, porphyrins with non-iron metal, or porphyrin lacking metal entirely produced stable and active CBS enzyme. Purification of recombinant CBS enzyme expressed in the presence of various metalloporphyrins confirmed that Mn(III) and Co(III) had 30-60% of the specific activity of Fe(III)-CBS, and still responded to allosteric activation by S-adenosyl-L-methionine. Treatment of S. cerevisiae with the chemical chaperone trimethylamine-N-oxide resulted in near complete restoration of function to human CBS produced in a heme-deficient strain. Taken together, these results suggest that porphyrin moiety of the heme plays a critical role in proper CBS folding and assembly, but that the metal ion is not essential for this function or for allosteric regulation by S-adenosyl-L-methionine.  相似文献   

6.
Due to their spectroscopic properties porphyrins are of special interest for a variety of applications, ranging from drug development or targeting to material sciences and chemical and biological sensors. Since chemical syntheses are limited in terms of regio- and stereoselective functionalization of porphyrins, a biosynthetic approach with tailored enzyme catalysts offers a promising alternative. In this paper, we describe assembly of the entire heme biosynthetic pathway in a three-plasmid system and overexpression of the corresponding genes with Escherichia coli as a host. Without further optimization, this approach yielded remarkable porphyrin production levels, up to 90 micro mol/liter, which is close to industrial vitamin B(12) production levels. Different combinations of the genes were used to produce all major porphyrins that occur as intermediates in heme biosynthesis. All these porphyrin intermediates were obtained in high yields. The product spectrum was analyzed and quantified by using high-performance liquid chromatography. Intriguingly, although protoporphyrin IX could be produced at high levels, overexpressed Bacillus subtilis ferrochelatase could not convert this substrate appreciably into heme. However, further investigation clearly revealed a high level of expression of the ferrochelatase and a high level of activity in vitro. These results may indicate that heme has a regulatory impact on the iron uptake of E. coli or that the ferrochelatase is inactive in vivo due to an incompatible enzyme interaction.  相似文献   

7.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

8.
V M D'souza  R C Holz 《Biochemistry》1999,38(34):11079-11085
The identity of the physiologically relevant metal ions for the methionyl aminopeptidase (MetAP) from Escherichia coli was investigated and is suggested to be Fe(II). The metal content of whole cells in the absence and presence of expression of the type I MetAP from E. coli was determined by inductively coupled plasma (ICP) emission analysis. The observed change in whole cell concentrations of cobalt, cadmium, copper, nickel, strontium, titanium, and vanadium upon expression of MetAP was negligible. On the other hand, significant increases in the cellular metal ion concentrations of chromium, zinc, manganese, and iron were observed with the increase in iron concentration being 4.4 and 6.2 times greater than that of manganese and zinc, respectively. Activity assays of freshly lysed BL21(DE3) cells containing the pMetAAP plasmid revealed detectable levels (>2 units/mg) of MetAP activity. Control experiments with BL21(DE3) without the MetAP plasmid showed no detectable enzymatic activity. Since MetAP is active upon expression, these data strongly suggest that cobalt is not the in vivo metal ion for the MetAP from E. coli. The MetAP from E. coli as purified was found to be catalytically inactive (相似文献   

9.
Hydrogenophilus thermoluteolus cytochrome c' (PHCP) has typical spectral properties previously observed for other cytochromes c', which comprise Ambler's class II cytochromes c. The PHCP protein sequence (135 amino acids) deduced from the cloned gene is the most homologous (55% identity) to that of cytochrome c' from Allochromatium vinosum (AVCP). These findings indicate that PHCP forms a four-helix bundle structure, similar to AVCP. Strikingly, PHCP with a covalently bound heme was heterologously synthesized in the periplasm of Escherichia coli strains deficient in the DsbD protein, a component of the System I cytochrome c biogenesis machinery. The heterologous synthesis of PHCP by aerobically growing E. coli also occurred without a plasmid carrying the genes for Ccm proteins, other components of the System I machinery. Unlike Ambler's class I general cytochromes c, the synthesis of PHCP is not dependent on the System I machinery and exhibits similarity to that of E. coli periplasmic cytochrome b(562), a 106-residue four-helix bundle.  相似文献   

10.
Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.  相似文献   

11.
The oncogenic E7 proteins of human papilloma virus (HPV 16) and of cottontail rabbit papilloma virus (CRPV) have been purified from an expression system in Escherichia coli. The proteins as purified from E. coli contain one tightly bound Zn(II) ion per molecule. The metal site shows facile exchange with either Cd(II) or Cu(I). The HPV 16 E7 maximally bound one Cd(II) or two Cu(I) ions, while the CRPV E7 bound two Cd(II) or three Cu(I) ions. The Cd(II) and Cu(I) E7 molecules exhibited optical transitions in the ultraviolet suggestive of metal:thiolate coordination. E7 proteins from HPV 16 and CRPV contain 7 and 8 cysteines/molecule, respectively. Reaction of the E7 proteins with the sulfhydryl reagent, dithiodipyridine, revealed that all the cysteinyl sulfurs are present in the reduced thiol state. Cu(I)-E7 molecules are luminescent with maximal emission at 570 nm. The observed emission at room temperature is indicative of metal coordination within a compact protein environment shielded from solvent interactions. The emission maxima occurs at the same wavelength (570 nm) as Cu(I)-cysteinyl sulfur clusters in Cu(I)-metallothioneins. The single Zn(II) atom in each protein can be removed from E7 in the presence of EDTA. The resulting apoE7 molecules remain soluble and can be partially reconstituted with Cd(II) to regain the ultraviolet charge transfer transitions.  相似文献   

12.
Biogenesis of c-type cytochromes in alpha- and gamma-proteobacteria requires the function of a set of orthologous genes (ccm genes) that encode specific maturation factors. The Escherichia coli CcmE protein is a periplasmic heme chaperone. The membrane protein CcmC is required for loading CcmE with heme. By expressing CcmE (CycJ) from Bradyrhizobium japonicum in E. coli we demonstrated that heme is bound covalently to this protein at a strictly conserved histidine residue. The B. japonicum homologue can transfer heme to apocytochrome c in E. coli, suggesting that it functions as a heme chaperone. CcmC (CycZ) from B. japonicum expressed in E. coli was capable of inserting heme into CcmE.  相似文献   

13.
Summary: Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich “WWD domain” (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe+3 state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe+2) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.  相似文献   

14.
Harker M  Bramley PM 《FEBS letters》1999,448(1):115-119
Isopentenyl diphosphate (IPP) acts as the common, five-carbon building block in the biosynthesis of all isoprenoids. The first reaction of IPP biosynthesis in Escherichia coli is the formation of 1-deoxy-D-xylulose-5-phosphate, catalysed by 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). E. coli engineered to produce lycopene, was transformed with dxps genes cloned from Bacillus subtilis and Synechocystis sp. 6803. Increases in lycopene levels were observed in strains expressing exogenous DXPS compared to controls. The recombinant strains also exhibited elevated levels of ubiquinone-8. These increases corresponded with enhanced DXP synthase activity in the recombinant E. coli strains.  相似文献   

15.
Zhao X  Yeung N  Wang Z  Guo Z  Lu Y 《Biochemistry》2005,44(4):1210-1214
The electrochemical properties of an engineered heme-copper center in myoglobin have been investigated by UV-visible spectroelectrochemistry. In the cyanide-bridged, spin-coupled heme-copper center in an engineered myoglobin, the presence of Zn(II) in the Cu(B) center raises the heme reduction potential from -85 to 49 mV vs NHE. However, in the cyanide-free, spin-decoupled derivative of the same protein, the presence of Zn(II) in the Cu(B) center exerts little influence on the heme reduction potentials (77 and 80 mV vs NHE, respectively, in the absence and in the presence of Zn(II)). Similar trends have also been observed when copper ion is present in the Cu(B) center, although on a smaller scale, due to reduction of Cu(II) to Cu(I) prior to heme reduction. These results show that the presence of a metal ion in the designed Cu(B) center has a significant effect on the redox potential of heme Fe only when the two metal centers are coupled through a bridging ligand between the two metal centers, indicating that spin coupling plays an important role in redox potential regulation. In addition, the presence of a single positively charged Cu(I) center in the Cu(B) center resulted in a much lower increase (16 mV) in heme reduction potential than that of two positively charged Zn(II) (118 mV). Therefore, the heme reduction potential must be lowered after the first electron transfer to reduce heme Fe(3+)-Cu(B)(2+) to Fe(3+)-Cu(B)(+). To raise the heme reduction potential to make the second electron transfer (i.e., reduction of Fe(3+)-Cu(B)(+) to Fe(2+)-Cu(B)(+)) to be favorable, most likely a proton or decoupling of the heme-copper center is needed in the heme-copper site. These findings provide a strong argument for a thermodynamic driving force basis for redox-regulated proton transfer in heme-copper oxidases.  相似文献   

16.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   

17.
Expression of recombinant hemoproteins in Escherichia coli is often limited because a vast majority of the protein produced lacks the heme necessary for function. This is compounded by the fact that standard laboratory strains of E. coli have a limited capacity to withdraw heme from the extracellular environment. We are developing a new tool designed to increase the heme content of our proteins of interest by simply supplementing the expression medium with low concentrations of hemin. This hemoprotein expression (HPEX) system is based on plasmids (pHPEX1-pHPEX3) that encode an outermembrane-bound heme receptor (ChuA) from E. coli O157:H7. This heme receptor, and others like it, confers on the host the ability to more effectively internalize exogenous heme. Transformation of a standard laboratory E. coli protein expression strain (BL-21 [DE3]) with the pHPEX plasmid led to the expression of a new protein with the appropriate molecular weight for ChuA. The receptor was functional as demonstrated by the ability of the transformant to grow on iron-deficient media supplemented with hemin, an ability that the unmodified expression strain lacked. Expression of our proteins of interest, catalase-peroxidases, using this system led to a dramatic and parallel increase in heme content and activity. On a per-heme basis, the spectral and kinetic properties of HPEX-derived catalase-peroxidase were the same as those observed for catalase-peroxidases expressed in standard E. coli-based systems. We suggest that the pHPEX plasmids may be a useful addition to other E. coli expression systems and may help address a broad range of problems in hemoprotein structure and function.  相似文献   

18.
Porphyrin accumulation by proliferating cells, e.g., those associated with cancers or wounds, tends to correlate with increased transferrin receptor density. To determine whether transferrin might be implicated in porphyrin transport, fluorescence and absorption spectroscopy were used to study the interaction of porphyrins with transferrin. A single high-affinity binding site for heme and other porphyrins (Kd approximately 20-25 nM) was detected by fluorescence spectroscopy. Difference spectroscopy revealed three additional heme-binding sites. These sites were distinct from the iron-binding sites: 1) Apotransferrin and diferric transferrin bound porphyrins with equal affinity; 2) 59Fe was not displaced from transferrin by porphyrins. Murine erythroleukemia cells incubated with [59Fe]hemin-[125I]transferrin internalized both labels concomitantly. Accumulation of [59Fe]hemin could be blocked by a 100-fold excess of diferric transferrin but not by apotransferrin. These results indicate that cells can internalize exogenous heme, and possibly porphyrins, bound to transferrin via its receptor.  相似文献   

19.
c-Type cytochromes are located partially or completely in the periplasm of gram-negative bacteria, and the heme prosthetic group is covalently bound to the protein. The cytochrome c maturation (Ccm) multiprotein system is required for transport of heme to the periplasm and its covalent linkage to the peptide. Other cytochromes and hemoglobins contain a noncovalently bound heme and do not require accessory proteins for assembly. Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide accumulation in Escherichia coli was heme dependent, with very low levels found in heme-deficient cells. However, apoproteins of the periplasmic E. coli cytochrome b562 or the cytosolic Vitreoscilla hemoglobin (Vhb) accumulated independently of the heme status. Mutation of the heme-binding cysteines of cytochrome c550 or the absence of Ccm also resulted in a low apoprotein level. These levels were restored in a degP mutant strain, showing that apocytochrome c550 is degraded by the periplasmic protease DegP. Introduction of the cytochrome c heme-binding motif CXXCH into cytochrome b562 (c-b562) resulted in a c-type cytochrome covalently bound to heme in a Ccm-dependent manner. This variant polypeptide was stable in heme-deficient cells but was degraded by DegP in the absence of Ccm. Furthermore, a Vhb variant containing a periplasmic signal peptide and a CXXCH motif did not form a c-type cytochrome, but accumulation was Ccm dependent nonetheless. The data show that the cytochrome c heme-binding motif is an instability element and that stabilization by Ccm does not require ligation of the heme moiety to the protein.  相似文献   

20.
Two functional input pathways for protons have been characterized in the heme-copper oxidases: the D-channel and the K-channel. These two proton-conducting channels have different functional roles and have been defined both by X-ray crystallography and by the characterization of site-directed mutants. Whereas the entrance of the D-channel is well-defined as D132(I) (subunit I; Rhodobacter sphaeroides numbering), the entrance of the K-channel has not been clearly defined. Previous mutagenesis studies of the cytochrome bo(3) quinol oxidase from Escherichia coli implicated an almost fully conserved glutamic acid residue within subunit II as a likely candidate for the entrance of the K-channel. The current work examines the properties of mutants of this conserved glutamate in the oxidase from R. sphaeroides (E101(II)I,A,C,Q,D,N,H) and residues in the immediate vicinity of E101(II). It is shown that virtually any substitution for E101(II), including E101(II)D, strongly reduces oxidase turnover (to 8-29%). Furthermore, the low steady-state activity correlates with an inhibition of the rate of reduction of heme a(3) prior to the reaction with O(2). These are phenotypes expected of K-channel mutants. It is concluded that the predominant entry point for protons going into the K-channel of cytochrome oxidase is the surface-exposed glutamic acid E101(II) in subunit II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号