首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CTG repeat of the myotonic dystrophy (MD) gene was analyzed in 62 MD patients and 54 healthy members of their families. A CTG repeat expansion was revealed in 57 (92%) patients and in 12 relatives who did not express clinical signs of MD. Family analysis showed that the CTG repeat number increased, which was associated with anticipation, decreased, or remained the same (17.6%) in alleles transmitted from parents to their children. The spontaneous mutation rate of the CTG repeat was estimated at 4 x 10(-2). Instability was characteristic of alleles with more than 19 repeated units.  相似文献   

2.
Distribution of CTG repetitive sequences in the myotonic dystrophy (MD) gene was analyzed in ten populations of the Volga-Ural region, including Tatars, Chuvashes, Maris, Udmurts, Mordovians, Komis, and four ethnogeographical groups of Bashkirs. A total of 25 alleles were found (9 to 14 in individual populations), with each allele containing 5 to 34 trinucleotide repeats. The allele frequency distribution had two peaks corresponding to alleles with 5 and 11-14 CTG repeats. The frequency of the (CTG)5 allele varied from 0.23 to 0.47 in Maris and Mordovians, respectively. Regarding the (CTG)11-14 alleles, those containing 13 and 12 trinucleotides were most frequent in all populations; their frequencies varied from 0.15 in Mordovians to 0.24 in Maris and Bashkirs from the Abzelilovskii raion (district). Alleles with large numbers of repeats (more than 30) were only found in Tatars and Bashkirs from the Abzelilovskii raion, where their frequency was 0.01. The data obtained were compared with those on other human populations from various regions of the world. In general, the populations of the Volga-Ural region took an intermediate position between European and Asian populations (although were somewhat more similar to the latter ones) with respect to the distribution of allelic frequencies of the CTG repetitive sequences. In individual populations, the number of genotypes varied from 13 to 27 in Mordovians and Bashkirs from the Ilishevskii raion, respectively. The observed heterozygosity was the highest (91%) in Udmurts and the lowest (58%) in Mordovians; the average heterozygosity was 81%. Such a high heterozygosity, as well as the revealed differentiation of the populations with respect to the distribution of the allelic frequencies of CTG repetitive sequences in the MD gene, allow this polymorphic DNA locus to be considered a highly informative genetic marker of populations.  相似文献   

3.
Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3′-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients.  相似文献   

4.
Myotonic dystrophy (DM) is a dominant neuromuscular disorder caused by the expansion of trinucleotide CTG repeats in the 3-untranslated region (3'-UTR) of the MtPK gene. Although DM-associated mental retardation suggests that neuronal functions are disturbed by the expansion mutation, the effect of this alteration in neuronal cells has not been approached. In this study we established stable transfectans of PC12 neuronal cell line expressing the reporter gene CAT alone (empty-vector clone) or fused to the MtPK 3'-UTR with 5, 60, or 90 CTG repeats (CTG5, CTG60, and CTG90 clones, respectively). CTG90 cells exhibited a suppression of NGF-induced neuronal differentiation while empty-vector, CTG5 and CTG60 clones differentiated normally. CTG90 cells displayed normal activation of early differentiation markers, ERK1/2, but the up-regulation of the late marker MAP2 was dramatically reduced. Our neuronal cell system provides the first information of how the mutant MtPK 3'-UTR mRNA affects neuronal functions.  相似文献   

5.
Expansion of CTG triplet repeats in the 3' untranslated region of the DMPK gene causes the autosomal dominant disorder myotonic dystrophy. Instability of CTG repeats is thought to arise from their capacity to form hairpin DNA structures. How these structures interact with various aspects of DNA metabolism has been studied intensely for Escherichia coli and Saccharomyces cerevisiae but is relatively uncharacterized in mammalian cells. To examine the stability of (CTG)(17), (CTG)(98), and (CTG)(183) repeats during homologous recombination, we placed them in the second intron of one copy of a tandemly duplicated pair of APRT genes. Cells selected for homologous recombination between the two copies of the APRT gene displayed distinctive patterns of change. Among recombinants from cells with (CTG)(98) and (CTG)(183), 5% had lost large numbers of repeats and 10% had suffered rearrangements, a frequency more than 50-fold above normal levels. Analysis of individual rearrangements confirmed the involvement of the CTG repeats. Similar changes were not observed in proliferating (CTG)(98) and (CTG)(183) cells that were not recombinant at APRT. Instead, they displayed high frequencies of small changes in repeat number. The (CTG)(17) repeats were stable in all assays. These studies indicate that homologous recombination strongly destabilizes long tracts of CTG repeats.  相似文献   

6.
Expansions of CTG repeats inJP-3 gene are associated with a phenotype similar to Huntington disease. These expansions are the cause of Huntington disease like-2 (HDL-2) phenotype. CTG repeats inJP-3 gene are polymorphic in healthy population. Analyses of CTG repeat polymorphism ofJP-3 gene in various healthy populations could help in estimating the population at risk for developing HDL-2. CTG repeat polymorphism ofJP-3 gene was analysed in healthy population of Serbia and Montenegro. Study included 198 unrelated subjects. Analyses ofJP-3 locus were performed using PCR and sequencing. Six differentJP-3 alleles were obtained and they were in the range of 11 to 18 CTG repeats showing a bimodal distribution, with peaks at 14 and 16. Results show that the distribution ofJP-3 alleles in population of Serbia and Montenegro is consistent with distributions in other analysed populations. The absence of alleles with more then 18 CTG repeats suggests that HDL-2 is very rare in the populations of Serbia and Montenegro.  相似文献   

7.
Myotonic dystrophy type 1 (DM1), the most common form of adult muscular dystrophy, is caused by anormal expansion of CTG trinucleotide repeats located in the 3′-untranslated region of the DMPK gene. The clinical features of DM1 are multisystemic and highly variable, and the unstable nature of CTG expansion causes wide genotypic and phenotypic presentations. In this study, we described to our knowledge for the first time the molecular diagnosis of myotonic dystrophy type 1 patients in the Mexican population, applying a fluorescent PCR method in combination with capillary electrophoresis analysis of the amplified products. We identified expanded alleles in 45 out of 50 patients (90%) with clinical features of myotonic disease. Furthermore, genotyping of 400 healthy subjects revealed the presence of 25 different alleles, ranging in size from 5 to 34 repeats. The most frequent allele was 13 CTG repeats (38.87%) and the frequency for alleles over 18 CTG repeats was 6.7%. Molecular test is essential for DM1 diagnosis and distribution of the CTG repeat alleles present in the Mexican population are significantly different from those of other populations.  相似文献   

8.
Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.  相似文献   

9.
10.
To study the effect of DM1-associated CTG repeats on neuronal function, we developed a PC12 cell-based model that constitutively expresses the DMPK gene 3′-untranslated region with 90 CTG repeats (CTG90 cells). As CTG90 cells exhibit impaired neurite outgrowth and as microtubule-associated proteins (MAPs) are crucial for microtubule stability, we analyzed whether MAPs are a target of CTG repeats. NGF induces mRNA expression of Map2, Map1a and Map6 in control cells (PC12 cells transfected with the empty vector), but this induction is abolished for Map2 and Map1a in CTG90 cells. MAP2 and MAP6/STOP proteins decrease in NGF-treated CTG90 cells, whereas MAP1A increases. Data suggest that CTG repeats might alter somehow the expression of MAPs, which appears to be related with CTG90 cell-deficient neurite outgrowth. Decreased MAP2 levels found in the hippocampus of a DM1 mouse model indicates that targeting of MAPs expression by CTG repeats might be relevant to DM1.  相似文献   

11.
Polymorphism of a highly polymorphic CTG repeat in the 3'-untranslated region of the myotonin protein kinase gene was analyzed in healthy people from several Eastern European populations (Russians, Moldovans, Belarussians, Komis, Chuvashes, Udmurts, Bashkirs, Tatars, Maris, and Mordovians). In total, 26 alleles of the CTG repeat were found, the repeat number ranging from 5 to 33 (alleles with six and seven repeats were not detected). The heterozygosity of individual populations varied from 61 to 91%. In the total sample combining all populations, the observed and expected heterozygosities did not differ (fixation index -0.0022) suggesting selective neutrality of the normal polymorphism of the CTG repeat in the myotonin protein kinase gene.  相似文献   

12.
Genetic instabilities in (CTG.CAG) repeats occur by recombination.   总被引:11,自引:0,他引:11  
The expansion of triplet repeat sequences (TRS) associated with hereditary neurological diseases is believed from prior studies to be due to DNA replication. This report demonstrates that the expansion of (CTG.CAG)(n) in vivo also occurs by homologous recombination as shown by biochemical and genetic studies. A two-plasmid recombination system was established in Escherichia coli with derivatives of pUC19 (harboring the ampicillin resistance gene) and pACYC184 (harboring the tetracycline resistance gene). The derivatives contained various triplet repeat inserts ((CTG.CAG), (CGG.CCG), (GAA.TTC), (GTC.GAC), and (GTG.CAC)) of different lengths, orientations, and extents of interruptions and a control non-repetitive sequence. The availability of the two drug resistance genes and of several unique restriction sites on the plasmids enabled rigorous genetic and biochemical analyses. The requirements for recombination at the TRS include repeat lengths >30, the presence of CTG.CAG on both plasmids, and recA and recBC. Sequence analyses on a number of DNA products isolated from individual colonies directly demonstrated the crossing-over and expansion of the homologous CTG.CAG regions. Furthermore, inversion products of the type [(CTG)(13)(CAG)(67)].[(CTG)(67)(CAG)(13)] were isolated as the apparent result of "illegitimate" recombination events on intrahelical pseudoknots. This work establishes the relationships between CTG.CAG sequences, multiple fold expansions, genetic recombination, formation of new recombinant DNA products, and the presence of both drug resistance genes. Thus, if these reactions occur in humans, unequal crossing-over or gene conversion may also contribute to the expansions responsible for anticipation associated with several hereditary neurological syndromes.  相似文献   

13.
为了实现在P.stipitis中进行无痕基因敲除,以Cre/LoxP系统为研究对象,首先通过同源重组构建尿嘧啶营养缺陷型树干毕赤酵母(ura3-);同时通过定点突变pSH47-Hpt质粒的hpt基因和cre基因,将CDS区CTG突变为TTG;最后以乙醛脱氢酶基因为靶基因,验证突变后的Cre/LoxP系统在P.stipitis进行无痕基因敲除的可行性。结果表明:本文在P.stipitis中成功使用潮霉素B抗性标记,经过修饰后的Cre/LoxP敲除系统能够在P.stipitis中无痕敲除目的基因,为后续研究P.stipitis功能基因和改造代谢途径提供了一种试验方法和筛选标记。  相似文献   

14.
Although the mutation for myotonic dystrophy has been identified as a (CTG)n repeat expansion located in the 3'-untranslated region of a gene located on chromosome 19, the mechanism of disease pathogenesis is not understood. The objective of this study was to assess the effect of (CTG)n repeats on the differentiation of myoblasts in cell culture. We report here that C2C12 myoblast cell lines permanently transfected with plasmid expressing 500 bases long CTG repeat sequences, exhibited a drastic reduction in their ability to fuse and differentiate into myotubes. The percentage of cells fused into myotubes in C2 C12 cells (53.4+/-4.4%) was strikingly different from those in the two CTG repeat carrying clones (1.8+/-0.4% and 3.3+/-0. 7%). Control C2C12 cells permanently transfected with vector alone did not show such an effect. This finding may have important implications in understanding the pathogenesis of congenital myotonic dystrophy.  相似文献   

15.
《IRBM》2022,43(3):143-150
ObjectiveCardiotocography (CTG) is a popular clinical tool to assess foetal health status. Automatic CTG analysis can remove the judgement differences of inter- and intra- doctors. However, absence of CTG database has hindered the development of automatic CTG analysis based on deep learning. Therefore, digitization of CTG signal from clinic report is an important way to enrich CTG database, and in turn promote the automatic CTG analysis.MethodThe proposed digitization method extracts digital signal from the commonly used binary CTG paper reports. An adaptive region positioning algorithm based on statistical calculation is used to locate signal regions. Then, by deducing the dynamic minimal weight sum in theory, methods based on statistical calculation and on the weight sum are designed to remove grid lines. Next, according to different breakpoint types and signal line trends, different signal reconstruction methods are formulated. This realize extracting the signal line from binary background grid lines. Finally, a calibration method based on segmented sampling is designed to reduce calibration error due to smartphone lens distortion.ResultsThe experimental results show that the correlation coefficients of FHR and UC of proposed method both reached 0.98. After three expert gynaecologists's evaluations, there are no clinically relevant differences were identified between the extracted signals and the reference ones.  相似文献   

16.
Spinocerebellar ataxias are a group of neurodegenerative disorders caused by dynamic mutations of microsatellite repeats. Two novel forms of SCAs have been described recently: SCA8, with expansions of CTA/CTG repeats in 3'UTR of the SCA8 gene, and SCA12, caused by expansion of the CAG tract in 5'UTR of the SCA12/PP2R2B gene. Analysis of CTA/CTG and CAG polymorphism in those two genes was performed in a Polish control group consisting of 100 individuals without any neurological signs. The distribution and ranges of the number of non-pathogenic repeats were similar to those observed in other populations described previously. Expansion of CTA/CTG repeats in the SCA8 locus was found in 2 of 100 controls and in 5 probands among 150 pedigrees affected with unidentified ataxias. As such expanded alleles were also observed in their healthy relatives, the pathogenic role of expansions in the SCA8 gene remains uncertain.  相似文献   

17.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

18.
Myotonic dystrophy (DM) is caused by the amplification of CTG repeats in the 3′ untranslated region of a gene encoding a protein homologous to serine/threonine protein kinases. In DM patients the CTG repeats are extremely unstable, varying in length from patient to patient and generally increasing in length in successive generations. There is a strong correlation between the size of the repeats and the age of onset and severity of the disease. The molecular basis of the effect of the CTG expansion on the development of the DM phenotype continues to be investigated. The first working hypothesis of the molecular mechanism of DM was a reduction in steady-state myotonin-protein kinase (Mt-PK) mRNA and protein levels. However, although the consensus finding is that the Mt PK mRNA and protein levels are decreased in DM patients, it is still not clear if this reduction leads directly to the DM phenotype. In this short review we discuss the molecular aspects of CTG instability and the expression of the myotonin-protein kinase gene in normal and DM populations.  相似文献   

19.
Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disease, highly variable and multisystemic, which is caused by the expansion of a CTG repeat located in the 3′ untranslated region of the DMPK gene. Normal alleles show a copy number of 5–37 repeats on normal chromosomes, amplified to 50–3000 copies on DM chromosomes. The trinucleotide repeat shows a trimodal allele distribution in the majority of the examined population. The first class includes alleles carrying (CTG)5, the second class, alleles in the range 7–18 repeats, and the third class, alleles (CTG) 19. The frequency of this third class is directly related to the prevalence of DM in different populations, suggesting that normal large-sized alleles predispose toward DM. We studied CTG repeat allele distribution and Alu insertion and/or deletion polymorphism at the myotonic dystrophy locus in two major Ethiopian populations, the Amhara and Oromo. CTG allele distribution and haplotype analysis on a total of 224 normal chromosomes showed significant differences between the two ethnic groups. These differences have a bearing on the out-of-Africa hypothesis for the origin of the DM mutation. In addition, (CTG) 19 alleles were exclusively detected in the Amhara population, confirming the predisposing role of these alleles compared with the DM expansion-mutation. Electronic Publication  相似文献   

20.
Despite substantial progress in understanding the mechanism by which expanded CTG/CAG trinucleotide repeats cause neurodegenerative diseases, little is known about the basis for repeat instability itself. By taking advantage of a novel phenomenon, we have developed a selectable assay to detect contractions of CTG/CAG triplets. When inserted into an intron in the APRT gene or the HPRT minigene, long tracts of CTG/CAG repeats (more than about 33 repeat units) are efficiently incorporated into mRNA as a new exon, thereby rendering the encoded protein nonfunctional, whereas short repeat tracts do not affect the phenotype. Therefore, contractions of long repeats can be monitored in large cell populations, by selecting for HPRT(+) or APRT(+) clones. Using this selectable system, we determined the frequency of spontaneous contractions and showed that treatments with DNA-damaging agents stimulate repeat contractions. The selectable system that we have developed provides a versatile tool for the analysis of CTG/CAG repeat instability in mammalian cells. We also discuss how the effect of long CTG/CAG repeat tracts on splicing may contribute to the progression of polyglutamine diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号