首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat production by means of oxygen consumptionVo2 (at Ta = 6° C, 25° C, 30° C, and 32° C) and non-shivering thermogenesis (NST) were studied in individuals of a diurnal rodent (Rhabdomys pumilio) and a nocturnal rodent (Praomys natalensis). The studied mice were acclimated to cold at Ta=8°C with a photoperiod of LD 12:12. On the otherhand specimens of these two species were acclimated at Ta=25°C with a long scotophase LD8:16. The results were compared with a control group (Ta=25° C, LD 12:12) and winter acclimatized individuals of both species.Vo2 in cold acclimated mice of both species was significantly increased when compared to the control group and was even higher than the winter acclimatized group when measured below the lower critical temperature. Long scotophase acclimated mice of both species also increased their oxygen consumption significantly when compared to the control group. NST was significantly increased in long scotophase acclimated mice from both species when compared to the control group. The results of this study indicate that the effects of acclimation to long scotophase are similar to those of cold acclimation. As changes in photoperiod are regular, it may be assumed that heat production mechanisms in acclimatization to winter will respond to changes in photoperiodicity.Present address: University of Haifa, Oranim, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

2.
Summary Heat production of two diurnal rodents,Rhabdomys pumilio andLemniscomys griselda was measured in long scotophase-LS (8L: 16D; 25°C) acclimated and long scotophase and cold — LSAC (8L: 16D; 6°C) acclimated animals and compared to a control group (12L: 12D; 25°C).LS increased in both species. Further acclimation of LSAC increased inR. pumilio and decreased inL. griselda. LS increased body temperature (T b) inL. griselda only. LS increased overall thermal conductance in both species. LSAC caused a further increase in this parameter inR. pumilio.A singificant (P<0.001) increase in the magnitude of maximal nonshivering thermogenesis (NST) was observed in both species due to LS acclimation. LSAC did not change this maximal NST but increased its obligatory part (minimal , P<0.05, inL. griselda, andP<0.001, inR. pumilio).The results of this study show that winter acclimatization of heat production mechanisms, in both species, may be due to extension of scotophase.Abbreviations LS long scotophase - LSAC long scotophase and cold - NA noradrenaline - NST nonshivering thermogenesis - RMR resting metabolic rate  相似文献   

3.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

4.
The daily activity and energy metabolism of pouched mice (Saccostomus campestris) from two localities in southern Africa was examined following warm (25 °C) and cold (10 °C) acclimation under long (LD 14:10) and short (LD 10:14) photoperiol. There was no differential effect of photoperiod on the daily activity or metabolism of pouched mice from the two localities examined, which suggests that reported differences in photoresponsivity between these two populations were not the result of differences in daily organisation. Neverthe-less, there was a significant increase in metabolism at 10 °C, irrespective of photoperiod, even though seven cold-acclimated animals displayed bouts of spontaneous torpor and saved 16.4–36.2% of their daily energy expenditure. All but one of these bouts occurred under short photoperiod, which suggests that short photoperiod facilitated the expression of torpor and influenced the daily energy metabolism of these individuals. As expected for a noctureal species, the amount of time spent active increased following acclimation to short photoperiod at 25 °C. However, there was a reduction in mean activity levels under short photoperiod at 10 °C, possibly because the stimulation of activity by short photoperiod was masked by a reduction in activity during bouts of spontaneous torpor. Cold temperature clearly had an overriding effect on the daily activity and metabolism of this species by necessitating an increase in metabolic heat production and eliciting spontaneous torpor which overrode the effect of short photoperiod on activity at an ambient temperature of 10 °C.Abbreviations 3-ANOVA three-way analysis of variance - %ACT percentage of time spent active - ADMR average daily metabolic rate - M b body mass - MR metabolic rate - MRdark metabolic rate recorded during the dark phase - MRlight metabolic rate recorded during the light phase - NST non-shivering thermogenesis - RQ respiratory quotient - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

5.
Summary Cytosolic extracts of liver, kidney, spleen, gill, red and white muscle from rainbow trout acclimated to 4 and 17°C, respectively, have been investigated in vitro with respect to their enzymic activity in stimulating the growth of nascent peptide chains (labelled polyphenylalanine) at assay temperatures from 5 to 25°C using polyuracil as messenger RNA. The elongation step of protein synthesis is characterized by aQ 10 value of about 2.4 (range 10–25°C) in all organs from both, 4 and 17°C acclimated fish.Except for the red muscle, the organs of cold acclimated trout, however, exhibit significantly higher specific elongation rates (mol phenylalanine polymerized/(g wet weight·h)) at any experimental temperature than those of warm acclimated fish. This increase of the elongation rates varies between the organs and ranges from +29% (liver) to +60% in the gill. The specific acylation rate (mol phenylalanyl-tRNA formed/(g wet weight·h)) surpasses the specific elongation rate by a factor of at least 8.5. Moreover, the specific acylation rate per mg protein is independent of acclimation temperature.It is concluded that the increased specific elongation rates in 4°C acclimated trout are not due to altered pool sizes of the precursor phenylalanyl-tRNA, but reflect an effective enhancement of enzymic elongation factor activities.In accordance with data taken from literature, this finding suggests a compensatory enhancement of in vivo protein synthesis to occur in trout during cold acclimation.Abbreviations E a apparent activation energy - EF elongation factor - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PHE phenylalanine - PHE-tRNA phenylalanyl transfer ribonucleic acid - POLY (U) poly-uracil - Q 10 van't Hoff's temperature coefficient - T accl acclimation temperature - T exp experimental temperature - TRITON X-100 octylphenol-polyethylene-glycolether  相似文献   

6.
In mammals, nocturnal light pulses (NLP) have been demonstrated to affect physiology and behavior. However, the impact of NLP as a stressor has been less broadly examined. The purpose of this study was to examine the effect of NLP (three 15 min 450 lux light pulses) during each scotophase on both thermoregulation and endocrine stress responses under short‐day (SD; 8L:16D) acclimation. Voles were acclimated to either SD (SD voles) or SD+NLP (NLP voles). Resistance to cold was estimated by measurements of body temperature (Tb) during cold exposure (5°C). Daily rhythms of energy expenditure (calculated from oxygen consumption), urine production, and urinary adrenaline and serum cortisol levels were measured. Tb values of SD voles were generally unaffected by the cold stimulus, whereas in NLP voles, resistance to cold was markedly lowered. While SD‐ and NLP voles showed similar ultradian characteristics in energy expenditure with a period of 3.5 h, mean energy expenditure levels were lowest for voles exposed to NLP‐treatment. In SD voles, but not in NLP voles, urine production rates showed clear time variations and were consistently highest for SD voles, with significant differences during the scotophase. Both mean total urinary adrenaline and serum cortisol levels were significantly elevated in NLP‐treated voles compared with the control group. Taken together, the results suggest that NLP negatively affects winter acclimatization of thermoregulatory mechanisms of M. socialis, probably by mimicking summer acclimatization, and consequently the thermoregulatory mechanisms respond inappropriately to ambient conditions. One important finding of this study is that NLP may act as a stressor and correspondingly impose a major threat to the physiological homeostasis of M. socialis, such that over‐winter survival might be compromised.  相似文献   

7.
Heart infarction is one of the main causes of death in the human population. Assurance of a sufficient level of bioenergetic processes is very important for the heart after infarction. Mn2+ as well as thiamine pyrophosphate (TPP) are positive effectors of the pyruvate dehydrogenase complex (PDH) and the 2-oxoglutarate dehydrogenase complex (OGDH), both of which play a very important role in the Krebs cycle. Thus, we have established the effect of MnCl2 (10mg/kg) and TPP (20mg/kg)-4 injections every 12 h-on the activity of PDH, OGDH, lactate dehydrogenase (LDH) and malate dehydrogenase (MDH). Additionally, we perform an analysis of ECG to affirm the changes in the heart electrophysiology of healthy rats after MnCl2 and TPP treatment. We then analyzed changes in the activity of these enzymes after experimental myocardial infarction in rats. We observed a decrease of OGDH and MDH activity in rat hearts after infarction in comparison, with sham-operated rats. Treatment of healthy rats with MnCl2 caused an increase of OGDH activity. Moreover both MnCl2 and TPP caused an increase of PDH activity and a decrease of MDH activity (TPP revealed a stronger effect). We found no changes in LDH activity. Electrocardiography data showed a slight shortening of the QT interval and an enhanced heartbeat rate after treatment with MnCl2. TPP caused only elongation of the QT interval. In conclusion, application of MnCl2 enhanced the activity of some very important enzymes in the respiration process (PDH and OGDH). This effect, connected with enhanced heartbeat and a slightly shortened ventricle relaxation, may have potential application during the key period of convalescence following heart infarction.  相似文献   

8.
1. The Macedonian mouse (Mus macedonicus), a small (15 g) mesic rodent distributed in the Mediterranean ecosystem, is a species which invades post fire habitats in the first stages of habitat recovery. 2. In order to assess the seasonal acclimatization of thermoregulatory and metabolic mechanisms, the response of several physiological variables to photoperiod manipulations under a constant Ta were studied. 3. Our results show that mice acclimated to a short photoperiod increased their resistance to cold, while acclimation to a long photoperiod increased their resistance to high Tas and the effectiveness of their thermoregulatory mechanisms. Body mass increased in mice acclimated to a short photoperiod. We conclude that photoperiod is an important environmental cue for seasonal acclimatization of thermoregulatory and metabolic mechanisms in this species.  相似文献   

9.
To investigate the effects of age on thermal sensitivity, preferred ambient temperature (T pref) was compared between old (71–76 years) and young (21–30 years) groups, each consisting of six male subjects in summer and winter. The air temperature (T a) was set at either 20° C or 40° C at commencement. The subject was directed to adjust theT a for 45 min by manipulating a remote control switch to the level at which he felt most comfortable. In the older group, theT pref was significantly lower in trials starting at 20° C than that starting at 40° C in summer. The fluctuation ofT pref (temperature difference between maximum and minimumT a during the last 10 min) was significantly wider in the older group in both summer and winter. Repetition of the same experiment on each subject showed a poorer reproducibility ofT pref in the older group than in the younger group in summer. Tympanic and esophageal temperatures of the older group kept falling throughout the trial starting at 20° C in summer. These results suggest that thermal sensitivity is decreased with advancing age and that thermal perception in the elderly, especially to cold, is less sensitive in summer.  相似文献   

10.
Timothy M. Casey 《Oecologia》1981,50(2):199-204
Summary Energy metabolism of brown lemmings in summer pelage was measured over long periods at several air temperatures, with and without a real nest or artificial nest material. Resting metabolism of lemmings at T a=-16°C was 43% higher than that of lemmings in nests. As T a increased, the difference between resting metabolism of animals with and without nests decreased and was similar at T a=20°C. The energy saved at rest is equivalent to a reduction of approximately 40% in the thermal conductance. Independent estimates of energy savings due to nest insulation by analysis of cooling curves of a lemming model with and without a nest suggest a 46% reduction in thermal conductance due to the nest. At T a=0°C, baby lemmings huddled in a nest had equilibrium temperature excesses (T b-T a) four to five times higher than isolated nestlings outside the nest. These data indicate that there is a substantial energy savings at ecologically relevant air temperatures, and that energy savings increase as T a decreases. If the insulative value of the nest is similar whether the animal is in summer or winter pelage, these data suggest that heat production of a resting lemming would be 0.88 W (about 1.6 times BMR), while in nests at subnivean air temperatures typical of Barrow, Alaska, during the winter.  相似文献   

11.
Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.  相似文献   

12.
Summary D. maculata, the white-faced hornet, stabilized (regulated) thoracic temperature (T Th) over wide ranges of ambient temperature (T a), whileV. vulgaris, the common yellowjacket, regulatedT Th poorly. The hornets also maintained a higherT Th than the wasps, sometimes heating 38°C aboveT a. Attacking individuals of both species had higherT Th than those either leaving or returning to the nest from foraging. The hornets, who are primarily hunters of live prey, showed peak activity near dawn, and they were as active atT a=2°C as at 20°C. Being able to regulate theirT Th and fly at the lowT a should enhance their ability to capture small insects that are usually torpid at theseT a. The yellowjacket wasps, on the other hand, who are scavengers as well as hunters, did not leave the nest at 2°C; their activity decreased greatly with decreasingT a. Differences in the foraging technique of the two vespids may be related to their different abilities to thermoregulate.  相似文献   

13.
Larvae of the goldenrod gall moth, Epiblema scudderiana, use a freeze avoidance strategy of cold hardiness to survive the winter. A key metabolic adaption that supports subzero survival is the accumulation of large amounts of glycerol as a colligative antifreeze. Production of glycerol relies on polyol dehydrogenase (PDH) which catalyzes the NADPH‐dependent conversion of glyceraldehyde into glycerol. Kinetic analysis of PDH from E. scudderiana revealed significant changes in properties as a result of subzero temperature acclimation; the Km for glyceraldehyde in 5°C‐acclimated larvae was 7.0 mM and doubled in ? 15°C‐exposed larvae. This change suggested that PDH is regulated by a state‐dependent covalent modification. Indeed, high and low Km forms could be interconverted by incubating larval extracts in vitro under conditions that stimulated either endogenous protein kinases or protein phosphatases. Protein kinase incubations doubled the Km glyceraldehyde of the 5°C enzyme, whereas protein phosphatase incubations decreased the Km of the ? 15°C enzyme by about 50%. PDH was purified by ion exchange and affinity chromatography steps and then subjected to electrophoresis. Staining with ProQ Diamond phosphoprotein stain showed a much higher phosphate content of PDH from ? 15°C‐acclimated larvae, a result that was further confirmed by immunoblotting that showed a much greater phosphoserine content on the ? 15°C enzyme. These experiments established that PDH is regulated by state‐dependent reversible phosphorylation in E. scudderiana and suggest that this regulatory mechanism makes a significant contribution to controlling the synthesis, maintenance, and degradation of glycerol pools over the winter months. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Summary The effect of photoperiod and melatonin treatment on cold resistance and thermogenesis of quails was studied. The birds were acclimated for 8 weeks to short day (8L:16D) or long day (16L:8D) conditions, and 8 of 16 quails in each group were implanted with melatonin capsules. One group of quails was maintained outside in an aviary during winter. Oxygen consumption ( ) body temperature (T b, recorded with temperature transmitters) and shivering (integrated pectoral EMG) were recorded continuously, and samples of heart rate and breathing rate were picked up when ambient temperature was decreased stepwise from 27 down to –75 °C. Heat production maximum (HPmax), cold limit, lower critical temperature, basal metabolic rate (BMR) and thermal conductance were determined.The results show that short day, cold and melatonin treatment improved cold resistance and thermal insulation of quils when compared with quails acclimated to long day conditions. An increase in HPmax was induced only by melatonin treatment. The results suggest that the acclimatization of quails is under control of the pineal gland.The linear increase of shivering intensity with at moderate cold load shows that shivering is the primary source for thermoregulatory heat production in the quail. AtT a's below –40 °C shivering remained constant although , heart rate and breathing rate continued to increase with increasing cold load. This could indicate the existence of a nonshivering thermogenesis in birds. Unlike to mammals, this non-shivering thermogenesis in birds would serve as secondary source of heat supporting shivering thermogenesis in severe coldAbbreviations BMR basal metabolic rate - ECG electrocardiogram - EMG electromyogram - NST nonshivering thermogenesis - SMR standard metabolic rate  相似文献   

15.
Two cultivars of wheat ( Triticum aestivum L.), a winter wheat, Kharkov, and a spring wheat, Glenlea, were acclimated under controlled conditions at 2 temperatures, 5°C and 25°C with a 12-h photoperiod. Water content, protein and proline concentrations were determined. Enzymatic properties (activity and apparent energy of activation) were investigated for enzymatic systems involved in 2 pathways of proline metabolism, the glutamic acid and ornithine pathways. Four enzymes were studied, proline dehydrogenase (PDH, EC 1.5.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), glutamine synthetase (GS, EC 6.3.1.2) and ornithine transaminase (OT, EC 2.6.1.13). Cold acclimation led to an accumulation of proline, a decrease in water content and an increase in soluble protein, especially in winter wheat. For both cultivars, cold acclimation modulated enzyme properties of PDH and GDH. Increased activities of GS and OT were observed as a result of cold acclimation in both cultivars, with the greatest increase in Kharkov. The apparent energy of activation of these 2 enzymes decreased, particularly for Kharkov, which accumulated proline in cold conditions.  相似文献   

16.
Haim A  Van Aarde RJ  Skinner JD 《Oecologia》1990,83(2):197-200
Summary Metabolic rates by means of oxygen consumption (VO2) at various ambient temperatures (T a) and food consumption as well as water intake and thermoregulation were compared between individuals of the Cape porcupine Hystrix africaeaustralis acclimated to T a=32°C with a photoperiod of 16L:8D summer-acclimated and T a=10°C; 8L:16D winter-acclimated. The lower critical temperature as well as overall minimal thermal conductance were lower for the winter-acclimated porcupines when compared to summer-acclimated ones, while VO2 at the thermoneutral-zone was significantly (P<0.001) higher in the winter-acclimated porcupines. Dry matter intake, apparent digestible dry matter intake, gross digestible energy intake, as well as water intake, were significantly higher in the winter-acclimated porcupines. Yet, while dry matter intake increased 4 times in the winter-acclimated porcupines, apparent digestible dry matter increased only at a rate of 2.9 times. This difference is better reflected in terms of digestibility efficiency which in the winter-acclimated porcupines is only at a rate of 67.5% while in the summer-acclimated porcupines it is at a rate of 90%. From the results of this study, it is possible to assume that heat production in the winter-acclimated porcupines is partly increased by food intake. Increased heat production on the one hand, and a decrease in overall minimal thermal conductance on the other, seem to be important mechanisms in winter acclimatization of the Cape porcupine.  相似文献   

17.
Summary The effect of photoperiod on the upper thermal tolerance of two species of frogs was studied by using the critical thermal maximum (CTM) as the end point. Both species are heliotropic and from temperate climates, but Hyla labialis lives under a near constant tropical photoperiod while Rana pipiens lives under a varying temperatezone photoperiod. The CTM of both species was studied over a 24-hour period to determine if a rhythm of temperature tolerance exists. In all but one of the acclimatization conditions used, the CTM of R. pipiens was higher than that of H. labialis. This agrees with what is known of their thermal ecology. Photoperiod significantly affects the CTM of both species. For Rana pipiens long (LD 16:8) photoperiods result in significantly higher thermal tolerance than short (LD 8:16) or moderate (LD 12:12) photoperiods at both 15 and 25° C. H. labialis shows a different pattern, having highest CTM at 25°C, LD 12:12 and lowest at 15°C, LD 12:12. When acclimated to a short (LD 8:16) photoperiod certain aspects of the frogs' tolerance of high temperatures are altered. At the same acclimatization the CTM of R. pipiens is higher than that of H. labialis, except under a combination short light regime and low temperature, and H. labialis at LD 8:16 shows no thermal acclimation between 15 and 25°C. Significant variation in the CTM over a 24-hour period occurred in H. labialis acclimatized at 25°C, LD 12:12 and R. pipiens at 25°C, LD 8:16 and 15°C, LD 12:12. For both species the 24-hour rhythm of temperature tolerance, when it occurs at LD 12:12, might be of adaptive value. Times of highest thermal tolerance are in the late morning or early afternoon and lowest tolerance is during the dark period. For R. pipiens under the unnatural combination of 25°C, LD 8:16, the pattern is reversed. When all three significant cycles are phase shifted so that the times of highest tolerance coincide, the pattern of the curves is very similar.  相似文献   

18.
Summary Djungarian dwarf hamsters,Phodopus s. sungorus, were kept in natural photoperiodic conditions throughout the year, either inside at a constantT a of 23°C or outside subjected to seasonally varyingT a. Comparisons were made between hamsters from both conditions to evaluate the significance of seasonal changes in photoperiod and/orT a as environmental cues for seasonal acclimatization inPhodopus. Basal metabolic rate was lowest in July (1.68 ml/g·h) and highest in January (2.06 ml/g·h inPhodopus living outside), combined with a decrease inT 1c from 26°C in July to 20°C in January. This was parallelled by seasonal changes in body weight (summer 42 g, winter 25g), fur colouration, fur depth and the occurrence of short daily torpor.AtT a below thermoneutrality total energy requirements for thermoregulation in winter acclimatizedPhodopus were found 36% lower than summer values (e.g. at O°CT a in summer 1,160 mW, in winter 760 mW), which were effected by a combined strategy of reducing body weight (19%) together with improvements of thermal insulation of the body surface (17%). All seasonal changes were similar inPhodopus living inside or outside, suggesting that seasonal changes in photoperiod and not seasonal changes inT a is the overriding controller for the environmental cueing of seasonality in energy requirements for thermoregulation.This research was supported by the Deutsche Forschungsgemeinschaft (He 990)  相似文献   

19.
Summary In the Djungarian hamster seasonal acclimatization is primarily controlled by photoperiod, but exposure to low ambient temperature amplifies the intensity and duration of short day-induced winter adaptations. The aim of this study was to test, whether the pineal gland is involved in integrating both environmental cues. Exposure of hamsters to cold (0 °C) reduces the sensitivity of the pineal gland to light at night and prevents inactivation of N-acetyltransferase (NAT). The parallel time course of NAT activity and plasma norepinephrine content suggests that circulating catecholamines may stimulate melatonin synthesis under cold load.Abbreviations NAT N-acetyltransferase - NE norepinephrine - T a ambient temperature  相似文献   

20.
Scarce bibliographical data exists on the enzymes in Lepidosiren paradoxa and analysis of several enzymes was considered worthy of investigation. Distribution of ADH, ALP, FBALD, GAPDH, G3PDH, G6PDH, GPI, LDH, MDH, and PGM was identified in ten tissues (retina, heart, muscle, liver, kidney, lung, gut, gills, brain, and ovary) of the South American lungfish and compared with patterns previously described in other vertebrates. Compared with earlier results differences in the number of loci expressed were observed for ADH, G3PDH, GPI, and MDH. The number of loci expressed and/or in tissue specificity of several enzymes (ADH, FBALD, GAPDH, G3PDH, G6PDH and PGM) were found to be similar to those of other vertebrates. Differences were detected in ALP due to the absence of an intestinal-specific form typical of fish, amphibians, reptiles and birds; further differences were observed in GPI and MDH due to their tissue expression. The differences in LDH involve the LDH-A4 isozyme which was most common in tissues. Overall, comparison with other vertebrates reveals that in L. paradoxa the tissue-restricted expressions of some enzymes are similar, while others have retained an ancestral pattern and exhibit a more widespread tissue expression of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号