首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Vascular endothelial cells are critical for the development and function of the mammalian circulatory system. We have analyzed the role of the endothelial cell-specific receptor tyrosine kinase TIE in the mouse vasculature. Mouse embryos homozygous for a disrupted Tie allele developed severe edema, their microvasculature was ruptured and they died between days 13.5 and 14.5 of gestation. The major blood vessels of the homozygous embryos appeared normal. Cells lacking a functional Tie gene were unable to contribute to the adult kidney endothelium in chimeric animals, further demonstrating the intrinsic requirement for TIE in endothelial cells. We conclude that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. TIE is not essential, however, for vasculogenesis, the early differentiation of endothelial cells.  相似文献   

10.
Mouse and human pregnancy-specific glycoproteins (PSG) are known to exert immunomodulatory functions during pregnancy by inducing maternal leukocytes to secrete anti-inflammatory cytokines that promote a tolerogenic decidual microenvironment. Many such anti-inflammatory mediators also function as proangiogenic factors, which, along with the reported association of murine PSG with the uterine vasculature, suggest that PSG may contribute to the vascular adaptations necessary for successful implantation and placental development. We observed that PSG22 is strongly expressed around the embryonic crypt on Gestation Day 5.5, indicating that trophoblast giant cells are the main source of PSG22 during the early stages of pregnancy. PSG22 treatment up-regulated the secretion of transforming growth factor beta 1 and vascular endothelial growth factor A (VEGFA) in murine macrophages, uterine dendritic cells, and natural killer cells. A possible role of PSGs in uteroplacental angiogenesis is further supported by the finding that incubation of endothelial cells with PSG22 resulted in the formation of tubes in the presence and absence of VEGFA. We determined that PSG22, like human PSG1 and murine PSG17 and PSG23, binds to the heparan sulfate chains in syndecans. Therefore, our findings indicate that despite the independent evolution and expansion of human and rodent PSG, members in both families have conserved functions that include their ability to induce anti-inflammatory cytokines and proangiogenic factors as well as to induce the formation of capillary structures by endothelial cells. In summary, our results indicate that PSG22, the most abundant PSG expressed during mouse early pregnancy, is likely a major contributor to the establishment of a successful pregnancy.  相似文献   

11.
12.
13.
14.
15.
16.
Immunocytochemistry utilizing a monoclonal antibody (BV1; blood vessel 1) highly reactive to the vasculature of the adult newt showed that a developing vasculature was present during early, pre-blastema, and early-bud blastema stages of forelimb regeneration in this species. Infusion of Prussian Blue and DiI into the brachial artery further delineated the intactness of this early vasculature. Finally, macroscopic observations of vascular flow underneath the apical epithelial cap (AEC) and microsurgical removal of the AEC and observation of subsequent bleeding buttressed the conclusion that an intact vasculature exists during early nerve-dependent stages of newt forelimb regeneration. The results suggest that this process of neovascular formation is angiogenesis, i.e., the formation of new vessels from pre-existing vessels in the stump. Furthermore, angiogenesis is an ongoing process initiated early after amputation. Blastema cells and the AEC are likely sourcesof factors that stimulate neovascularization.  相似文献   

17.
18.
During embryogenesis, the development and differentiation of the eye requires the concomitant formation of the neural/glial elements along with a dense vascular network. The adult neural retina is supported by two distinct vascular systems, the proper retinal vessels and the choroidal vessels. The two beds differ not only in their pattern of embryonic differentiation, but also in their function in the adult organism. The retinal vasculature has barrier properties similar to those observed in the brain, whereas the choroidal vessels display a highly fenestrated phenotype. The hyaloid vasculature is a transient embryonic vascular bed which is complete at birth in mammals and regresses contemporaneously with the formation of the retinal vasculature. The dependence of the retina on its blood supply makes it highly vulnerable to any vascular changes and indeed ocular diseases, such as proliferative retinopathy, age-related macular degeneration and the hyperplastic primary vitreous, which are associated with abnormalities of the different vascular beds of the eye. A number of factors have been implicated in developmental and pathological changes in vessel formation and regression, including fibroblast growth factors, platelet-derived endothelial growth factor and vascular endothelial growth factor, among others. The purpose of this review is to describe and discuss new insights into the mechanisms and molecular cues involved in the development of the normal and pathological vascular systems of the eye. The characterization of the molecules and cell-cell interactions involved in the formation, stabilization and regression of new vessels has led to the identification of potential control points for therapeutic intervention.  相似文献   

19.
20.
Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号