首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: New Zealand obese (NZO) mice exhibit a polygenic syndrome of obesity, insulin resistance, and hypercholesterolemia that resembles the human metabolic syndrome. This study was performed in order to locate genes responsible for elevated serum cholesterol and to compare their effects under a standard and high fat diet.METHODS: A backcross population of NZO with SJL mice (NZO x F1(SJL x NZO)) was generated. Mice were raised on a normal or high fat diet and were monitored for 22 weeks (body weight, serum cholesterol, and blood glucose). A genome-wide scan was performed by genotyping of approximately 200 polymorphic microsatellite markers by PCR and linkage analysis was performed with the MAPMAKER program.RESULTS: In the genome-wide scan, a single susceptibility locus for hypercholesterolemia (Chol1/NZO, maximum LOD score 14.5 in a combined population of 523 backcross mice) was identified on chromosome 5. Cholesterol levels were significantly elevated in both male and female homozygous carriers of the Chol1/NZO allele. The locus maps 40cM distal of the previously described obesity locus Nob1 in the vicinity of the marker D5Mit244 and in the vicinity of hypercholesterolemia QTL previously identified in the NZB, CAST, and C57BL/6J strains. Chol1/NZO was not associated with elevated body weight, serum insulin, or hyperglycemia. The high fat diet significantly increased serum cholesterol levels, but the fat content of the diet did not alter the absolute effect of Chol1/NZO.Conclusions: Chol1/NZO is a major susceptibility locus on the distal mouse chromosome 5, which produces gender-independent hypercholesterolemia in NZO mice. The effect of Chol1/NZO was independent of the dietary fat content and was not associated with the other traits of the metabolic syndrome. Thus, it is suggested that the responsible gene might be involved in cholesterol metabolism.  相似文献   

2.
Both NZB nu/+ and NZW nu/+ mice were microbially clean by cesarean section. The (NZB x NZW)F1 hybrid (NZB/W) nu/nu mice and nu/+ littermates were then generated by mating of NZB nu/+ with NZW nu/+mice under specific pathogen-free conditions. The female NZB/W F1 nu/nu mice did not develop autoimmune kidney disease, whereas all of nu/+ female littermates mice exhibited proteinuria and died of renal failure with a 50% survival time of 35 wk. Namely, nude mice had no signs of proteinuria up to the time of their death caused by other diseases rather than glomerulonephritis, and their mean survival time was greater than 45 wk. Nude mice had also no anti-ssDNA antibody in their serum. However, splenic B cells of NZB/W nude mice exhibited hyper-responsiveness to both LPS and B151-TRF2, a T cell-derived polyclonal B cell-stimulation factor, and produced large numbers of Ig-secreting cells and anti-TNP plaque-forming cells as well as anti-ssDNA antibody comparable to the nu/+ littermate mice. Interestingly, thymus-engrafted NZB/W nude mice developed autoimmune disease exemplified by the induction of anti-ssDNA antibody and proteinuria at approximately the same time as their nu/+ littermates. These results indicate that the B cell hyper-responsiveness found in NZB/W mice is apparently determined by the T cell-independent process, and T cells are obligatorily required for the development of autoimmune disease in NZB/W mice.  相似文献   

3.
The unit gravity sedimentation technique was used to separate spleen cells from sevveral strains of mice. Settling patterns (plot of cell number against settling rate) were similar for BALB/c, DBA/2, C3H/He, and NZB/W mice of different ages. In particular, no subpopulation was found by this technique to be missing from the spleens of old NZB/W mice.A number of functional studies performed with the separated cells proved more informative than the settling patterns themselves. Fractions of cells which sedimented at a rate of between about 6 mm/hr and 10 mm/hr were enriched in responsiveness to PHA, Con A, and allogeneic cells. These fractions obtained from old NZB/W mice lacked such activities. However, the active fractions from young NZB/W spleens, which were enriched in θ-bearing cells, could restore the responsiveness of old NZB/W mice to primary immunization with sheep erythrocytes. These studies indicate that functional separation of spleen cells from NZB/W mice is possible and that activities lacking in whole spleens from old NZB/W mice are also lacking in the separate fractions. The ability to restore helper T cell function in old NZB/W mice with active fractions from young NZB/W mice has implications for further study and treatment of their autoimmune disease.  相似文献   

4.
The mechanisms of systemic autoimmune disease are poorly understood and available therapies often lead to immunosuppressive conditions. We describe here a new model of autoantigen-specific immunotherapy based on the sites of autoantigen presentation in systemic autoimmune disease. Nucleosomes are one of the well-characterized autoantigens. We found relative splenic localization of the stimulative capacity for nucleosome-specific T cells in (NZB x NZW)F(1) (NZB/W F(1)) lupus-prone mice. Splenic dendritic cells (DCs) from NZB/W F(1) mice spontaneously stimulate nucleosome-specific T cells to a much greater degree than both DCs from normal mice and DCs from the lymph nodes of NZB/W F(1) mice. This leads to a strategy for the local delivery of therapeutic molecules using autoantigen-specific T cells. Nucleosome-specific regulatory T cells engineered by triple gene transfer (TCR-alpha, TCR-beta, and CTLA4Ig) accumulated in the spleen and suppressed the related pathogenic autoantibody production. Nephritis was drastically suppressed without impairing the T cell-dependent humoral immune responses. Thus, autoantigen-specific regulatory T cells engineered by multiple gene transfer is a promising strategy for treating autoimmune diseases.  相似文献   

5.
Autoimmune NZB and NZB/W mice display early abnormalities in thymus histology, T cell development, and mature T cell function. Abnormalities in the subcapsular/medullary thymic epithelium (TE) can also be inferred from the early disappearance of thymulin from NZB. It has also been reported that NZB thymic epithelial cells do not grow in culture conditions that support the growth of these cells from other strains of mice. In order to study the contribution of TE to the abnormal T cell development and function in NZB and NZB/W mice, we have devised a culture system which supports the growth of TE cells from these mice. The method involves the use of culture vessels coated with extracellular matrix produced by a rat thymic epithelial cell line. TEA3A1, and selective low-calcium, low-serum medium. In addition TEA3A1 cells have been used as an antigen to generate monoclonal antibodies specific for subcapsular/medullary TE. These antibodies, as well as others already available, have been used to show that the culture conditions described here select for cells displaying subcapsular/medullary TE markers, whereas markers for cortical TE and macrophages are absent.  相似文献   

6.
We have recently shown that tolerogenic administration of an artificial peptide (pConsensus) that is based on sequences within the V(H) regions of several murine anti-dsDNA Ig delays appearance of autoantibodies in female (New Zealand Black (NZB) x New Zealand White (NZW))F(1) (NZB/W F(1)) mice and significantly prolongs their survival. The aim of this study was to characterize the T cell population(s) involved in pConsensus-induced down-regulation of autoimmune responses in tolerized NZB/W F(1) mice. Using MHC class II dimers loaded with tolerogenic peptide, we found that pCons favored expansion of peptide-reactive CD4(+)CD25(+) regulatory T cells (T(R)) that inhibited in vitro production of anti-dsDNA Ab-forming cells. Suppression by T(R) was abrogated by the presence in culture of Ab to glucocorticoid-induced TNFR family member 18 or to TGFbeta latency-associated protein. These findings suggest possible relevance of Ag specificity in the mechanism of T(R)-mediated immune tolerance to Ig-derived peptides in NZB/W F(1) mice.  相似文献   

7.
In normal mice, stromal cell-derived factor 1 (SDF-1/CXCL12) promotes the migration, proliferation, and survival of peritoneal B1a (PerB1a) lymphocytes. Because these cells express a self-reactive repertoire and are expanded in New Zealand Black/New Zealand White (NZB/W) mice, we tested their response to SDF-1 in such mice. PerB1a lymphocytes from NZB/W mice were exceedingly sensitive to SDF-1. This greater sensitivity was due to the NZB genetic background, it was not observed for other B lymphocyte subpopulations, and it was modulated by IL-10. SDF-1 was produced constitutively in the peritoneal cavity and in the spleen. It was also produced by podocytes in the glomeruli of NZB/W mice with nephritis. The administration of antagonists of either SDF-1 or IL-10 early in life prevented the development of autoantibodies, nephritis, and death in NZB/W mice. Initiation of anti-SDF-1 mAb treatment later in life, in mice with established nephritis, inhibited autoantibody production, abolished proteinuria and Ig deposition, and reversed morphological changes in the kidneys. This treatment also counteracted B1a lymphocyte expansion and T lymphocyte activation. Therefore, PerB1a lymphocytes are abnormally sensitive to the combined action of SDF-1 and IL-10 in NZB/W mice, and SDF-1 is key in the development of autoimmunity in this murine model of lupus.  相似文献   

8.
The marked stimulatory effect of insulin on the metabolism of [U-14C]glucose to CO2, glyceride-glycerol, and fatty acid observed with adipocytes from normal New Zealand yellow (NZY) mice and young (nonobese) New Zealand obese (NZO) mice was greatly diminished in cells obtained from adult obese NZO mice. Adipocytes from obese NZO mice had lower basal rates of CO2 formation and fatty acid synthesis than cells from NZY or young NZO mice. Glyceride-glycerol was labeled to a similar extent under basal conditions in adipocytes from all three groups of mice, implying that the basal rate of glucose transport and the enzymes of the glycolytic pathway are intact in obese NZO adipocytes. Both basal and epinephrine-stimulated lipolysis were impaired in adipocytes from obese NZO mice when compared with cells from NZY and young NZO mice. Epinephrine-stimulated lipolysis was markedly less sensitive to the inhibitory effect of insulin in adipocytes from obese NZO mice than in NZY and young NZO controls. These studies suggest that adipocytes from young, nonobese NZO mice do not exhibit resistance to epinephrine and insulin, and that hormone resistance and decreased rates of metabolism accompany the onset and evolution of obesity.  相似文献   

9.
Previous work suggested that gonadal steroids influence immunity through the thymus, but the mechanisms were unclear. To investigate the effects of these hormones on immune responses to T1 and TD antigens in autoimmune mice, we studied hybrid NZB/W mice and the nonautoimmune DBA/2 strain. Mice castrated at 14 days of age were implanted with Silastic capsules releasing, in adults, physiologic levels of E2 in males or Te in females. Sham-operated controls received empty capsules. Splenic PFC were quantified 4 to 5 days after challenge with the TI2 antigen TNP-Ficoll, the TI1 antigen TNP-LPS, or the TD antigen SRBC. Young castrated NZB/W males implanted with E2 had striking enhancement of IgM responses to TNP-Ficoll when compared to castrated Te-treated females and comparable sham-operated controls of both sexes. E2 also stimulated responses to TNP-LPS. In response to challenge with SRBC, young E2-treated NZB/W males had a consistent trend to increased IgM PFC, and the stimulatory effect of E2 on IgG plaques was variable. Physiologic doses of Te had no consistent effect on responses in young mice. In old female NZB/W mice, Te caused PFC response after immunization with TNP-Ficoll to resemble age-matched NZB/W males. As sham-operated NZB/W females grew older, PFC responses to SRBC fell. This age-related phenomenon was delayed, however, in female castrates implanted with Te. In contrast, Te clearly suppressed responses to TNP-LPS. Implantation of E2 did not alter responses to TNP-Ficoll, TNP-LPS, or SRBC in nonautoimmune DBA/2 males. This finding suggested that exogenous E2 given in physiologic doses did not influence immunologic responsiveness in a normal strain to the degree seen in hormone-sensitive NZB/W mice. It was concluded that E2 enhanced responses to a variety of exogenous antigens in autoimmune NZB/W mice. The most consistent E2-induced increase in PFC response was observed with TI antigens, suggesting that E2 exerted its effects on B cells or Ts.  相似文献   

10.
The New Zealand obese (NZO) mouse strain shares with the related New Zealand black (NZB) strain a number of immunophenotypic traits. Among these is a high proportion of B-1 B lymphocytes, a subset associated with autoantibody production. Approximately 50% of NZO/HlLt males develop a chronic insulin-resistant type 2 diabetes syndrome associated with 2 unusual features: the presence of B lymphocyte–enriched peri-insular infiltrates and the development of anti-insulin receptor autoantibodies (AIRAs). To establish the potential pathogenic contributions ofBlymphocytes and AIRAs in this model, a disrupted immunoglobulin heavy chain gene (Igh-6) congenic on the NZB/BlJ background was backcrossed 4 generations into the NZO/HlLt background and was then intercrossed to produce mice that initially segregated for wild-type versus the mutant Igh-6 allele and thus permitted comparison of syndrome development. A new flow cytometric assay (AIRA binding to transfected Chinese hamster ovary cells stably expressing mouse insulin receptor) showed IgM and IgG subclass AIRAs in serum from Igh-6 intact males, but not in Igh6null male serum. However, the absence of B lymphocytes and antibodies distinguishing mutant from wild-type males failed to significantly affect diabetes-free survival. The Igh6nullmales gained weight less rapidly than wild-type males, probably accounting for a retardation, but not prevention, of hyperglycemia. Thus, AIRA and the Blymphocyte component of the peri-insulitis in chronic diabetics were not essential either to development of insulin resistance or to eventual pancreatic beta cell failure and loss. A new substrain, designated NZL, was generated by inbreeding Igh-6 wild-type segregants. Currently at the F10 generation, NZL mice exhibit the same juvenile-onset obesity as NZO/HlLt males, but develop type 2 diabetes at a higher frequency (> 80%). Also, unlike NZO/HlLt mice that are difficult to breed, the NZL/Lt strain breeds well and thus offers clear advantages to obesity/diabetes researchers.  相似文献   

11.
Six sublines of NZB mice bred in Japan were collected and their mitochondrial DNA (mtDNA) was examined by restriction analysis. The phenotypes of at least three of these sublines (NZB/Nrs, NZB/Nga and NZB/KlJms) differed from a standard one (NZB/BlWehi). Since mtDNA is inherited maternally, all sublines of a single inbred strain should share the same mtDNA phenotype. Therefore, b-type of mtDNA should be observed in all NZB sublines. Nevertheless, the above-mentioned sublines showed d-type mtDNA. These results suggested a genetic contamination of these sublines. This was confirmed by the finding that six aberrant alleles were detected also in their nuclear genomes using biochemical markers. For elucidation of the cause of contamination, we characterized the genetic profiles of four standard NZ-strains, NZB/BlWehi NZO/BlWehi, NZC/BlWehi and NZX/BlWehi, and of common inbred strains with black coat color, C57BL/6J, C57BL/10Sn, C57BL/Ks, C58/J and AU/SsJ. We found that five of the six aberrant alleles most strongly corresponded with those of C57BL/Ks. These results suggest that this contamination was ascribable to cross of NZB mice with a certain C56BL strain. We also deduced that NAB/BlPt and NZB/Füll also probably were contaminated strains, suggesting that this contamination was not restricted to Japan.  相似文献   

12.
Autoimmune MRL-lpr/lpr and NZB/W mice spontaneously secrete large quantities of pathogenic IgG1 and IgG2a autoantibodies. NZB mice also produce autoantibodies but these tend to be of the IgM H chain class. This work examines whether differences in the isotype of autoantibody produced by lupus-prone mice reflects differences in the sensitivity of autoreactive B cells to lymphokine-mediated IgG secretion. Twenty-five percent of normal BALB/c B cells produced IgG1 when stimulated in vitro with IL-4 plus LPS. This was comparable with the effect of IL-4 on small resting B cells from MRL-lpr/lpr and NZB/W mice. In contrast, less than 8% of the resting B cells from NZB mice produced IgG1 under these conditions. LPS plus IFN-gamma induced 5% of BALB/c and NZB/W but only 1% of NZB B cells to secrete IgG2a. Because lymphocytes from both young and old NZB mice showed diminished IgG1 and IgG2a secretion after lymphokine treatment, B cells from this strain appeared to be intrinsically resistant to the effects of IL-4 and IFN-gamma. In contrast, a disproportionately large proportion (22%) of B cells from adult MRL-lpr/lpr mice produced IgG2a when treated with IFN-gamma in vitro. Only B cells from MRL-lpr/lpr mice with active disease responded with such high levels of IgG2a production: cells from animals that had not yet developed clinical disease produced normal levels of IgG2a. Within each strain, B cells producing antibodies against autoantigens such as DNA, bromelain-treated mouse RBC and Sm responded to treatment with IL-4 and IFN-gamma in a manner indistinguishable from B cells producing antibodies against conventional Ag such as TNP and ARS.  相似文献   

13.
14.
Attenuated antioxidant activities, irregular cytokines expressions and reduced regulatory T cells, are strongly associated with the pathogenesis of systemic lupus erythematosus (SLE). Despite the well‐established beneficial effects of cystamine on lupus‐prone mice, the extent to which cystamine contributes to antioxidant activity and the reduction of regulatory T cells has seldom been investigated. Therefore, this study elucidates how cystamine affects anti‐oxidant activities in NZB/W F1 mice by performing assays of Glutathione (GSH), 1,1‐diphenyl‐2‐ picryl‐hydrazyl (DPPH) and malondialdehyde thiobarbituric acid (MDA). In addition, investigations of the effects of cystamine on CD4+/CD25+ regulatory T cells and interleukin‐6 (IL6)/STAT‐3 signalling were performed with flow cytometry and immunoblots. Experimental results reveal more significantly reduced MDA and increased GSH and DPPH in NZB/W F1 mice receiving cystamine than in those mice receiving PBS. Meanwhile, CD4+/CD25+ regulatory T cells more significantly increase in NZB/W F1 mice receiving cystamine than in those mice receiving PBS, accompanied by significantly reduced IL‐6/phosphorylated STAT‐3 expression. The above findings suggest the beneficial effects of cystamine in terms of increasing antioxidant activities and CD4+/CD25+ regulatory T cells in lupus‐prone mice by suppressing IL‐6/STAT3 signalling.  相似文献   

15.
The enzyme TdT was used as a marker with which to study the ontogeny of primitive lymphopoietic cells in NZ strain mice. A marked accumulation of abnormally large, rapidly proliferating TdT+ cells was seen in the subcapsular region of the thymus cortex in the NZB and NZB/W mice. This abnormal accumulation of TdT+ thymocytes was most pronounced in the NZB/W hybrid and persisted for at least the first 16 wk of life. In addition, significantly elevated percentages of TdT+ bone marrow cells (presumptive prothymocytes) were present in NZB, NZW, and NZB/W mice between 1 and 4 wk of age, with the highest mean peak levels occurring in the NZB strain. Treatment of both normal and adrenalectomized BALB/c and NZB/W mice with pharmacologic doses (7 to 10 mg/kg) of PGE1 caused a marked, dose-dependent decrease in thymus weight and thymus cell number within 12 to 18 hr. Histologic and cell separation studies showed that this was due to the selective depletion of PNA+ TdT+ cortical thymocytes. Similarly, PGE1 caused a reversible, dose-dependent decrease in the percentage of TdT+ bone marrow cells. In contrast, PGF2 alpha, which is not therapeutically active against autoimmunity in NZB/W mice, had no detectable effect on TdT+ bone marrow cells or thymocytes in BALB/c or NZB/W mice. These results directly document the existence of abnormalities in the development of lymphopoietic precursor cells in the bone marrow and thymus cortex of NZ strain mice prior to the onset of autoimmune phenomena. The results also raise the possibility that the therapeutic efficacy of exogenous PGE1 in autoimmune NZ strain mice may be related, at least in part, to its ability to rectify the abnormal development of these early lymphoid cells.  相似文献   

16.
Posttranslational protein modifications influence a number of immunologic responses ranging from intracellular signaling to protein processing and presentation. One such modification, termed isoaspartyl (isoAsp), is the spontaneous nonenzymatic modification of aspartic acid residues occurring at physiologic pH and temperature. In this study, we have examined the intracellular levels of isoAsp residues in self-proteins from MRL(+/+), MRL/lpr, and NZB/W F(1) mouse strains compared with nonautoimmune B10.BR mice. In contrast to control B10.BR or NZB/W mice, the isoAsp content in MRL autoimmune mice increased and accumulated with age in erythrocytes, brain, kidney, and T lymphocytes. Moreover, T cells that hyperproliferate to antigenic stimulation in MRL mice also have elevated intracellular isoAsp protein content. Protein l-isoaspartate O-methyltransferase activity, a repair enzyme for isoAsp residues in vivo, remains stable with age in all strains of mice. These studies demonstrate a role for the accumulation of intracellular isoAsp proteins associated with T cell proliferative defects of MRL autoimmune mice.  相似文献   

17.
Responses of B cells from autoimmune mice to IL-5   总被引:5,自引:0,他引:5  
Three strains of mice (NZB/W F1 X NZW (NZB/W), BXSB, and MRL/Mp-lpr/lpr (MRL/lpr] develop an autoimmune disease that is clinically and immunologically similar to human SLE. A characteristic of these mice is polyclonal B cell hyperactivity. To explore whether this may be related to hyper-responsiveness to B cell stimulatory factors, we investigated the proliferative and secretory responses of B cells from these mice to semi-purified natural and rIL-5, a major regulator of B cell development in the mouse. As this lymphokine stimulates growth and differentiation of activated B cells, attention was focused on in vivo-activated B cell populations, obtained from the interface of 50/65% Percoll density gradients, from normal or autoimmune mice. This cell population from NZB/W mice secreted IgM and incorporated [3H]TdR at significantly higher levels in response to IL-5, and was more sensitive to IL-5, than a comparable population from several normal murine strains. NZB/W female and male mice displayed heightened responses to IL-5, indicating that this is characteristic of the strain in general and is not associated with the accelerated severe disease of the females. Small resting B cells from NZB/W and normal mice were insensitive to IL-5 stimulation. In contrast to NZB/W mice, no difference was observed in the magnitude of either proliferative or Ig secretory responses between in vivo-activated B cell populations from autoimmune BXSB and MRL/lpr or normal mice. Thus, B cell hyper-responsiveness to IL-5 is a characteristic of NZB/W mice but not of two other lupus-prone murine strains. As one unique feature of NZB/W mouse B cells compared to normal and other autoimmune B cells is an elevated proportion of Ly-1+ B cells, the possibility of IL-5 hyper-responsiveness being associated with this B cell subpopulation was investigated. Fluorescence-activated cell sorter sorted Ly-1+ and Ly-1- B cells both responded to IL-5, however Ly-1+ B cells consistently showed a higher stimulation index in both proliferative and Ig secretory responses to this lymphokine.  相似文献   

18.
We have extended the findings in the accompanying paper by characterizing the serum clearance and tissue uptake of model soluble immune complexes and the saturation of the reticuloendothelial system (RES) by these complexes in normal mice and in mice with murine lupus (NZB/W F1 females). Adult NZB/W or young C3H mice were injected with radiolabeled stable site-specifically cross-linked mouse anti-DNP oligomers as model immune complexes to probe RES function. Blood clearance and uptake by liver, spleen, and kidney were unimpaired in NZB/W mice. To determine if the RES exhibits partial saturation in the NZB/W mice, we deliberately induced a state of RES blockade with heat-aggregated human gamma-glubulin (HAG). With increasing doses of HAG (1 to 4 mg/20 g body weight) both strains similarly showed a progressive increase in RES saturation as measured by reduced liver uptake of model oligomers. Recovery from saturation was complete by 120 min in both strains. At maximal liver saturation there was only a small increase in oligomer uptake by kidney or spleen, the majority of complexes remaining within the circulation. Thus, RES capacity for handling soluble model immune complexes appears unimpaired in NZB/W mice.  相似文献   

19.
Autoantigen presentation to T cells is crucial for the development of autoimmune disease. However, the mechanisms of autoantigen presentation are poorly understood. In this study, we show that splenic phagocytes play an important role in autoantigen presentation in murine lupus. Nucleosomes are major autoantigens in systemic lupus erythematosus. We found that nucleosome-specific T cells were stimulated dominantly in the spleen, compared with lymph nodes, lung, and thymus. Among splenic APCs, F4/80(+) macrophages and CD11b(+)CD11c(+) dendritic cells were strong stimulators for nucleosome-specific T cells. When splenic phagocytes were depleted in (NZB x NZW) F(1) (NZB/W F(1)) mice, nucleosome presentation in the spleen was dramatically suppressed. Moreover, depletion of splenic phagocytes significantly suppressed anti-nucleosome Ab and anti-dsDNA Ab production. Proteinuria progression was delayed and survival was prolonged in phagocyte-depleted mice. The numbers of autoantibody- secreting cells were decreased in the spleen from phagocyte-depleted mice. Multiple injections of splenic F4/80(+) macrophages, not those of splenic CD11c(+) dendritic cells, induced autoantibody production and proteinuria progression in NZB/W F(1) mice. These results indicate that autoantigen presentation by splenic phagocytes including macrophages significantly contributes to autoantibody production and disease progression in lupus-prone mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号