首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang P  Pioszak AA  Ninfa AJ 《Biochemistry》2007,46(13):4117-4132
Glutamine synthetase adenylyltransferase (ATase) regulates the activity of glutamine synthetase by adenylylation and deadenylylation in response to signals of nitrogen and carbon status: glutamine, alpha-ketoglutarate, and the uridylylated and unmodified forms of the PII signal transduction protein. ATase consists of two conserved nucleotidyltransferase (NT) domains linked by a central region of approximately 200 amino acids. Here, we study the activities and regulation of mutated and truncated forms of ATase. Our results indicate the following. (i) The N-terminal NT domain contained the adenylyl-removing (AR) active site, and the C-terminal NT domain contained the adenylyltransferase (AT) active site. (ii) The enzyme contained a glutamine binding site, and glutamine increased the affinity for PII. (iii) The enzyme appeared to contain multiple sites for the binding of PII and PII-UMP. (iv) Truncated versions of ATase missing the C-terminal (NT) domain lacked both AT and AR activity, suggesting a role for the C-terminal NT domain in both activities. (v) The purified C-terminal NT domain and larger polypeptides containing this domain had significant basal AT activity, which was stimulated by glutamine. These polypeptides were indifferent to PII and PII-UMP, or their ATase activity was inhibited by either PII or PII-UMP. (vi) Certain point mutations in the central region or an internal deletion removing most of this part of the protein eliminated the AR activity and eliminated activation of the AT activity by PII, while not eliminating the binding of PII or PII-UMP. That is, these mutations in the central region appeared to destroy the communication between the PII and PII-UMP binding sites and the AT and AR active sites. (vii) Certain mutations in the central region of ATase appeared to dramatically improve the binding of glutamine to the enzyme. (viii) While the isolated AT and AR domains of ATase bound poorly to PII and PII-UMP, these domains bound PII and PII-UMP significantly better when linked to the central region of ATase. Together, our results indicate a highly coordinated enzyme, in which the AT and AR domains participate in each other's regulation and distant regulatory sites are in communication with each other. A model for the regulation of ATase by glutamine, PII, and PII-UMP consistent with all data is presented.  相似文献   

2.
We report the crystal structure of the N-terminal domain of Escherichia coli adenylyltransferase that catalyzes the reversible nucleotidylation of glutamine synthetase (GS), a key enzyme in nitrogen assimilation. This domain (AT-N440) catalyzes the deadenylylation and subsequent activation of GS. The structure has been divided into three subdomains, two of which bear some similarity to kanamycin nucleotidyltransferase (KNT). However, the orientation of the two domains in AT-N440 differs from that in KNT. The active site of AT-N440 has been identified on the basis of structural comparisons with KNT, DNA polymerase beta, and polyadenylate polymerase. AT-N440 has a cluster of metal binding residues that are conserved in polbeta-like nucleotidyl transferases. The location of residues conserved in all ATase sequences was found to cluster around the active site. Many of these residues are very likely to play a role in catalysis, substrate binding, or effector binding.  相似文献   

3.
4.
5.
A mutation of Klebsiella aerogenes causing production of an altered PII regulatory protein which stimulates overadenylylation of glutamine synthetase and also prevents its derepression was combined with mutations abolishing the activity of adenylyltransferase. The results support the idea that PII plays a role in the regulation of the level of glutamine synthetase which is independent of its interaction with adenylyltransferase.  相似文献   

6.
7.
《Bioorganic chemistry》1986,14(2):163-169
The inhibition of Escherichia coli glutamine synthetase by phosphinothricin [2-amino-4-(methylphosphinyl)butanoic acid] has been studied. This amino acid was observed to function as an active site directed inhibitor exhibiting time-dependent inhibition of glutamine synthetase in the presence of ATP or adenylylimidodiphosphate (AMPPNP) but not adenylyl(β,γ-methylene) diphosphonate (AMPPCP). The inactivation was observed to be pseudo-first order. Phosphinothricin was also found to inhibit the enzyme reversibly under initial rate conditions and was competitive with respect to glutamate with K1S = 18 ± 3 μm. The inactive enzyme inhibitor complex was found to contain approximately 11 molecules of ADP and of 32P per dodecamer using [γ-32P]ATP. Reactivation of the inactive enzyme complex was achieved by incubating the enzyme complex in 50 mm acetate (pH 4.4), 1 m KCl, and 0.40 m (NH4)2SO4. ADP, phosphinothricin, and Pi were released upon reactivation.  相似文献   

8.
Uridylyltransferase, a component of the covalent modification cascade system that controls glutamine synthetase activity in Escherichia coli, has been purified to apparent homogeneity. The purification was facilitated by the use of an E. coli strain which carries multiple copies of a ColE1-hybrid plasmid containing the glnD gene that encodes uridylyltransferase and which overproduces its synthesis by 25-fold. Gel electrophoresis and high pressure liquid chromatography studies show that the native enzyme is a single polypeptide chain of Mr = 95,000 +/- 5,000. The purified enzyme catalyzes the uridylylation as well as the deuridylylation of the regulatory protein PII, demonstrating that a single bifunctional enzyme is involved in the covalent interconversion of PII. Gel filtration studies indicate that the enzyme undergoes slow irreversible aggregation during most steps of purification with a concomitant loss of activity.  相似文献   

9.
A mutant (gltB) of Escherichia coli lacking glutamate synthase (GOGAT) was unable to utilize a wide variety of compounds as sole nitrogen source (e.g., arginine, proline, gamma-aminobutyrate, and glycine). Among revertants of these Asm- strains selected on one of these compounds (e.g., arginine, proline, or gamma-aminobutyrate) were those that produce glutamine synthetase (GS) constitutively (GlnC phenotype). These revertants had a pleiotropically restored ability to grow on compounds that are metabolized to glutamate. This suggested that the expression of the genes responsible for the metabolism of these nitrogen sources was regulated by GS. An examination of the regulation of proline oxidase confirmed this hypothesis. The differential sensitivities of GlnC and wild-type strains to low concentrations (0.1 mM) of the glutamine analog L-methionine-DL-sulfoximine supported the conclusion that the synthesis of a glutamine permease was also positively controlled by GS. During the course of this study we found that the reported position of the locus (gltB) for glutamate synthase is incorrect. We have relocated this gene to be 44% linked to the argG locus by P1 transduction. Further mapping has shown that the locus previously called aspB is in reality the gltB locus and that the "suppressor" of the aspB mutation (A. M. Reiner, J. Bacteriol. 97:1431-1436, 1969) is the locus for glutamate dehydrogenase (gdhA).  相似文献   

10.
《Bioorganic chemistry》1986,14(3):242-248
Incubation of Escherichia coli glutamine synthetase with thiourea trioxide resulted in partial inactivation of the enzyme. This reagent specifically modifies lysine residues to form homoarginine. By amino acid analysis 2.3 ± 0.3 residues of homoarginine are produced per enzyme subunit after treatment with thiourea trioxide. Previously we determined that thiourea dioxide totally inactivated glutamine synthetase and modified both lysine and histidine residues (J. Colanduoni and J. J. Villafranca (1985) J. Biol. Chem. 260, 15,042–15,050). Thiourea trioxide reacted with the same lysine residues of glutamine synthetase as thiourea dioxide. The Km values for the thiourea trioxide modified enzyme were determined and are 210 ± 30 μm and 10 ± 1 mm for ATP and glutamate, respectively. Both values are about threefold higher than for native enzyme assayed under the same conditions. Fluorescence titrations of native and thiourea trioxide labeled enzyme showed that ATP binding was virtually unchanged by the modification while glutamate and methionine sulfoximine bound about twofold more weakly to the modified enzyme.  相似文献   

11.
Ryle MJ  Padmakumar R  Hausinger RP 《Biochemistry》1999,38(46):15278-15286
Taurine/alpha-ketoglutarate dioxygenase (TauD), a member of the broad class of non-heme Fe(II) oxygenases, converts taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde while decomposing alpha-ketoglutarate (alphaKG) to form succinate and CO(2). Under anaerobic conditions, the addition of alphaKG to Fe(II)TauD results in the formation of a broad absorption centered at 530 nm. On the basis of studies of other members of the alphaKG-dependent dioxygenase superfamily, we attribute this spectrum to metal chelation by the substrate C-1 carboxylate and C-2 carbonyl groups. Subsequent addition of taurine perturbs the spectrum to yield a 28% greater intensity, an absorption maximum at 520 nm, and distinct shoulders at 480 and 570 nm. This spectral change is specific to taurine and does not occur when 2-aminoethylphosphonate or N-phenyltaurine is added. Titration studies demonstrate that each TauD subunit binds a single molecule of Fe(II), alphaKG, and taurine. In addition, these studies indicate that the affinity of TauD for alphaKG is enhanced by the presence of taurine. alpha-Ketoadipate, the other alpha-keto acid previously shown to support TauD activity, and alpha-ketocaproate lead to the formation of weak 520 nm-like spectra with Fe(II)TauD in the presence of taurine; however, corresponding spectra at 530 nm are not observed in the absence of taurine. Pyruvate and alpha-ketoisovalerate fail to elicit absorption bands in this region of the spectrum, even in the presence of taurine. Stopped-flow UV-visible spectroscopy reveals that the 530 and 520 nm spectra associated with alphaKG-Fe(II)TauD and taurine-alphaKG-Fe(II)TauD are formed at catalytically competent rates ( approximately 40 s(-)(1)). The rate of chromophore formation was independent of substrate or enzyme concentration, suggesting that alphaKG binds to Fe(II)TauD prior to the formation of a chromophoric species. Significantly, the taurine-alphaKG-Fe(II)TauD state, but not the alphaKG-Fe(II)TauD species, reacts rapidly with oxygen (42 +/- 9 s(-)(1)). Using the data described herein, we develop a preliminary kinetic model for TauD catalysis.  相似文献   

12.
The PII regulatory protein of Escherichia coli glutamine synthetase exists in two interconvertible forms: a uridylylated form (PIID) which promotes the deadenylylation of glutamine synthetase and an unmodified form (PIIA) which promotes the adenylylation of glutamine synthetase (Mangum, J.H., Magni, G., and Stadtman, E.R. (1973) Arch. Biochem. Biophys. 158, 514-525). PII has been purified to homogeneity. Its molecular weight is 44,000. The protein is composed of four subunits, each with a molecular weight of approximately 11,000. The subunits are identical as judged by: (a) the homogeneity of the subunits in sodium dodecyl sulfate, 8 M urea, and 6 M guanidine HCl; (b) the minimal molecular weight calculated from the amino acid composition; and (c) the isolation of only two tryptic peptides containing tyrosine (there are 8 tyrosyl residues per 44,000 molecular species). Following iodination of PIIA and PIID with 125I in the presence of chloramine-T, tryptic digestion yields two radioactive peptides from PIIA and only one from PIID. Since a tyrosine with a substituted hydroxyl group cannot be iodinated, this result indicates that 1 tyrosyl residue in each subunit is modified by the covalent attachment of UMP. This conclusion is supported also by the fact that treatment of PIID with snake venom phosphodiesterase results in the release of covalently bound UMP and the stoichiometric appearance of phenolate ion (pH 13) as measured by ultraviolet absorption spectroscopy. The enzyme activities (uridylyl-removing) responsible for removal and (uridylytransferase) responsible for attachment of UMP to PII have been partially purified. These activities co-purify through a variety of procedures, including hydrophobic chromatography, and are stabilized by high ionic strength buffers. Whereas Mn2+ alone supports only uridylyl-removing activity, ATP, alpha-ketoglutarate, and Mg2+ support both uridylyl-removing and uridylyltransferase activities.  相似文献   

13.
We have investigated the inhibition of Escherichia coli glutamine synthetase (GS) with alpha- and gamma-substituted analogues of phosphinothricin [L-2-amino-4-(hydroxymethylphosphinyl)butanoic acid (PPT)], a naturally occurring inhibitor of GS. These compounds display inhibition of bacterial GS that is competitive vs L-glutamate, with Ki values in the low micromolar range. At concentrations greater than Ki the phosphinothricins caused time-dependent loss of enzyme activity, while dilution after enzyme inactivation resulted in recovery of enzyme activity. ATP was required for inactivation; the nonhydrolyzable ATP analogue AMP-PCP failed to support inhibition of GS by the phosphinothricins. The binding of these inhibitors to the enzyme was also characterized by measurement of changes in protein fluorescence, which provided similar inactivation rate constants k1 and k2 for the entire series of compounds. Rate constants koff for recovery were also determined by fluorescence measurement and were comparable for both PPT and the gamma-hydroxylated analogue GHPPT and significantly greater for the alpha- and gamma-alkyl-substituted compounds. Electron paramagnetic resonance spectra provided information on the interaction of the phosphinothricins with the manganese form of the enzyme in the absence of ATP, and significant binding was observed for PPT and GHPPT. 31P NMR experiments confirmed that enzyme inactivation is accompanied by hydrolysis of ATP, although phosphorylated phosphinothricins could not be detected in solution. The kinetic behavior of these compounds is consistent with a mechanism involving inhibitor phosphorylation, followed by release from the active site and simultaneous hydrolysis to form Pi and free inhibitor.  相似文献   

14.
C E Caban  A Ginsburg 《Biochemistry》1976,15(7):1569-1580
The glutamine synthetase adenylyltransferase (EC 2.7.7.42), WHIch catalyzes the adenylylation and deadenylylation of glutamine synthetase in E. coli, has been stabilized and purified 2200-fold to apparent homogeneity. Sedimentation and electrophoresis studies show that the native enzyme is a single polypeptide chain of 115,000 +/- 5000 molecular weight with an isoelectric pH (PL) OF 4.98, a sedimentation coefficient (S20.w0) of 5.6S, and a molar frictional coefficient (f/f0) of 1.52. An alpha-helical content of approximately equal to 25% and approximately equal to 28% beta-pleated sheet and approximately equal to 47% random coil structures were estimated from circular dichroism measurements. The amino acid composition of the protein has been determined. The intrinsic tryptophanyl residue flourescence of adenylyltransferase is two fold greater than that of L-tryptophan; this property has been used to monitor ligand-induced conformational changes in the enzyme. Activators of the adenylylation reaction (ATP, L-glutamine, or the E. coli PII regulatory protein) produced an enhancement of fluorescence; alpha-ketoglutarate, an inhibitor of adenylylation and an activator of deadenulylation, caused a net decrease in fluorescence. The adenylytransferase has separate interaction sites for L-glutamine and the regulatory PII protein.  相似文献   

15.
16.
D D Clark  J J Villafranca 《Biochemistry》1985,24(19):5147-5152
Isotope-exchange enhancement studies, a variation on positional isotope-exchange enhancement as described by Raushel and Garrard [Raushel, F. M., & Garrard, L. J. (1984) Biochemistry 23, 1791-1795], are used to establish the point in the biosynthetic reaction of Escherichia coli glutamine synthetase at which gamma-glutamyl phosphate is formed. In these experiments, the behavior of the reverse biosynthetic reaction, i.e., the reaction of ADP, L-glutamine, and phosphate to form NH4+, L-glutamate, and ATP, is examined as a function of the concentration of ammonium ion. By varying the concentration of NH4+, the ratio of the velocity of isotope exchange to the velocity of net reaction, as measured by the rate of 18O depletion from labeled phosphate and the rate of production of L-glutamate, respectively, can be modulated in a mechanism-dependent manner. Evidence is presented demonstrating the presence of a branch point in the mechanism. The enzyme-ATP-glutamate complex may partition in two ways, one involving binding of ammonium ion and the other involving the chemical transformation to form the enzyme-ADP-gamma-glutamyl phosphate complex. The alternate pathways then rejoin upon formation of the enzyme-ADP-NH4+-gamma-glutamyl phosphate complex. Because of the branch point, there is no absolute requirement that ammonium ion be absent or present in order for the formation of gamma-glutamyl phosphate to occur. At high concentrations of ammonia, one pathway through the branch can be eliminated, effectively making that portion of the pathway ordered, with ATP, L-glutamate, and NH4+ binding consistent with our previously reported steady-state kinetic mechanism [Meek, T. D., & Villafranca, J. J. (1980) Biochemistry 19, 5513-5519].  相似文献   

17.
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in coenzyme A (CoA) biosynthesis: the reversible adenylation of 4'-phosphopantetheine yielding 3'-dephospho-CoA and pyrophosphate. Wild-type PPAT from Escherichia coli was purified to homogeneity. N-terminal sequence analysis revealed that the enzyme is encoded by a gene designated kdtB, purported to encode a protein involved in lipopolysaccharide core biosynthesis. The gene, here renamed coaD, is found in a wide range of microorganisms, indicating that it plays a key role in the synthesis of 3'-dephospho-CoA. Overexpression of coaD yielded highly purified recombinant PPAT, which is a homohexamer of 108 kDa. Not less than 50% of the purified enzyme was found to be associated with CoA, and a method was developed for its removal. A steady state kinetic analysis of the reverse reaction revealed that the mechanism of PPAT involves a ternary complex of enzyme and substrates. Since purified PPAT lacks dephospho-CoA kinase activity, the two final steps of CoA biosynthesis in E. coli must be catalyzed by separate enzymes.  相似文献   

18.
Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a “backup” regulator of pathway flux relative to pantothenate kinase.  相似文献   

19.
A procedure was developed to purify large quantities of PII protein from an Escherichia coli strain which contains a multicopy plasmid harboring the structural gene of PII (the glnB gene). Ultraviolet spectra of uridylylated and unuridylylated PII were obtained using the purified PII and empirical formulas to calculate the concentration of protein and the average number of uridylylated subunits per molecule were derived. A continuous fluorometric assay for the measurement of uridylylated PII (PIID) and adenylyltransferase (ATase) was also established. Rate measurements at various concentrations of PIID and at a fixed concentration of ATase showed that a tetrameric PIID molecule interacts with only one ATase molecule at a time. The complete nucleotide sequence of the glnB gene was determined and parts of the deduced amino acid sequence were confirmed by the results of amino acid sequence analysis of peptides. The PII subunit consists of 103 amino acids (Mr = 11,580). Two tyrosines reside at positions 46 and 51, where Tyr51 is the site of uridylylation. Nucleotide sequence analysis of the upstream region showed no obvious sites for the binding of RNA polymerase, indicating that the glnB gene is a part of an as yet unidentified operon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号