首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l–1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.  相似文献   

2.
Molybdenum is required for both dinitrogen fixation and nitrate assimilation. In oxic waters the primary form of molybdenum is the molybdate anion. Using radioactive [99Mol Na2MoO4, we have shown that the transport of molybdate by a natural assemblage of freshwater phytoplankton is light-dependent and follows typical saturation kinetics. The molybdate anion is strikingly similar to sulfate and we present data to show that sulfate is a competitive inhibitor of molybdate assimilation by planktonic algae and bacteria. The ability of freshwater phytoplankton to transport molybdate is inhibited at sulfate concentrations as low as 5% of those in seawater and at sulfate: molybdate ratios as low as 50 to 100 times lower than those found in seawater, Similarly, the growth of both a freshwater bacterium and a saltwater diatom was inhibited at sulfate: molybdate ratios lower than those in seawater.The ratio of sulfate to molybdate is 10 to 100 times greater in seawater than in fresh water. This unfavorable sulfate: molybdate ratio may make molybdate less biologically available in the sea. The sulfate: molybdate ratio may explain, in part, the low rates of nitrogen fixation in N-limited salt waters.  相似文献   

3.
固氮蓝细菌束毛藻(Tricodesmium)是海洋中丰度最高的固氮微生物,贡献了约42%的海洋生物固氮,为海洋生态系统提供了新的氮源,驱动海洋初级生产力和食物网,在海洋生物地球化学循环中发挥重要作用。作为海洋中“新氮”主要贡献者,束毛藻是一种不产生异形胞的丝状固氮蓝细菌。因为生物固氮的关键酶固氮酶对氧气十分敏感,一般固氮蓝细菌通常产生异形胞或采用夜间固氮的方式进行生物固氮,避免氧气对固氮酶的抑制作用。近年来研究发现,束毛藻具有一套独特的生物固氮体系,能够使同一藻丝在白天同时完成光合作用和生物固氮,并具有复杂的调控机制。本文综述了近年来束毛藻生物固氮策略的最新研究进展,介绍了其生物固氮和光合作用之间的精密调控机制,对拓展固氮微生物尤其是海洋蓝细菌固氮机制的认识具有借鉴意义。  相似文献   

4.
NifQ- and Mol- mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ- and Mol- mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. Cystine increased the molybdenum requirement of Mol- mutants for nitrate reductase activity by at least 100-fold. Cystine had the same effect on the molybdenum requirement for nitrate reductase activity in Escherichia coli ChlD- mutants. This shows that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. The effects of nifQ and mol mutations on nitrogenase could be suppressed either by the addition of cystine or by high concentrations of molybdate. This suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high.  相似文献   

5.
Bulen, William A. (Charles F. Kettering Foundation, Yellow Springs, Ohio). Effect of tungstate on the uptake and function of molybdate in Azotobacter agilis. J. Bacteriol. 82:130-134. 1961.-The reported competitive inhibition of molybdate by tungstate was investigated in an effort to elucidate molybdenum functions associated with nitrogen fixation by Azotobacter agilis (A. vinelandii). Growth, respiration, and N(2) (15)-incorporation experiments with normal and molybdenum-deficient cells indicated that tungstate inhibits the uptake of molybdate but does not compete with the metabolically functional molybdenum of cells metabolizing N(2). Neither a molybdenum requirement nor a tungstate inhibition was observed with cells metabolizing urea.  相似文献   

6.
Kinetics of sulfate uptake by freshwater and marine species ofDesulfovibrio   总被引:3,自引:0,他引:3  
Apparent half-saturation constants (K m) and maximum uptake rates (V max) for sulfate were determined in four species ofDesulfovibrio of freshwater and marine origin using a35S-sulfate tracer technique. The lowerstK m (5 M) was found in the freshwater speciesDesulfovibrio vulgaris (Marburg) and the highestK m (77 M) in the marine speciesDesulfovibrio salexigens. Maximum specific rates of sulfate uptake (i.e.,V max) were proportional to the growth rates observed in batch cultures. The halophilicDesulfovibrio salexigens did not change itsK m andV max between 1 and 6,000 M SO 4 2- , and apparently did not induce a low-affinity uptake system at high sulfate concentrations. The low half-saturation constants measured for sulfate uptake explain why high rates of bacterial sulfate reduction occur in surface sediments of freshwater lakes, and why sulfate reduction can be a quantitatively important process in anaerobic carbon mineralization in low-sulfate environments. The results shows that extremely low sulfate concentrations must occur before sulfate reduction is completely outcompeted by methanogenesis.Abbreviations MPB methane producing bacteria - SRB sulfate reducing bacteria  相似文献   

7.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

8.
  • In polluted areas, plants may be exposed to supra‐optimal levels of the micronutrient molybdenum. The physiological basis of molybdenum phytotoxicity is poorly understood. Plants take up molybdenum as molybdate, which is a structural analogue of sulphate. Therefore, it is presumed that elevated molybdate concentrations may hamper the uptake and subsequent metabolism of sulphate, which may induce sulphur deficiency.
  • In the current research, Chinese cabbage (Brassica pekinensis) seedlings were exposed to 50, 100, 150 and 200 μm Na2MoO4 for 9 days.
  • Leaf chlorosis and a decreased plant growth occurred at concentrations ≥100 μm . Root growth was more affected than shoot growth. At ≥100 μm Na2MoO4, the sulphate uptake rate and capacity were increased, although only when expressed on a root fresh weight basis. When expressed on a whole plant fresh weight basis, which corrects for the impact of molybdate on the shoot‐to‐root ratio, the sulphate uptake rate and capacity remained unaffected. Molybdate concentrations ≥100 μm altered the mineral nutrient composition of plant tissues, although the levels of sulphur metabolites (sulphate, water‐soluble non‐protein thiols and total sulphur) were not altered. Moreover, the levels of nitrogen metabolites (nitrate, amino acids, proteins and total nitrogen), which are generally strongly affected by sulphate deprivation, were not affected. The root water‐soluble non‐protein thiol content was increased, and the tissue nitrate levels decreased, only at 200 μm Na2MoO4.
  • Evidently, molybdenum toxicity in Chinese cabbage was not due to the direct interference of molybdate with the uptake and subsequent metabolism of sulphate.
  相似文献   

9.
Benthic microalgal communities are important components of estuarine food webs and make substantial contributions to coastal materials cycling. Nitrogen is generally the limiting factor for marine primary production; however other factors can limit benthic primary producers because of their access to the additional nutrients found in sediment porewater. Field and laboratory experiments were conducted to test the hypothesis that water column nitrogen supply affects estuarine sandflat benthic microalgal community structure and function. Our field and mesocosm experiments assessed changes at both the population and functional group levels. Simulated water column nitrogen additions increased maximum community photosynthesis in most cases (Pbmax from photosynthesis vs. irradiance curves). Additional changes that resulted from nitrogen additions were decreases in porewater phosphate, increases in porewater ammonium, shifts in community composition from N2 fixing cyanobacteria toward diatoms, and detectable, though not statistically significant increases in biomass (as chlorophyll a). Results from field and laboratory experiments were quite similar, suggesting that laboratory experiments support accurate predictions of the response of intertidal benthic microalgae to changes in water column nutrient conditions.  相似文献   

10.
Tidal freshwater ecosystems experience acute seawater intrusion associated with periodic droughts, but are expected to become chronically salinized as sea level rises. Here we report the results from an experimental manipulation in a tidal freshwater Zizaniopsis miliacea marsh on the Altamaha River, GA where diluted seawater was added to replicate marsh plots on either a press (constant) or pulse (2 months per year) basis. We measured changes in porewater chemistry (SO42?, Cl?, organic C, inorganic nitrogen and phosphorus), ecosystem CO2 and CH4 exchange, and microbial extracellular enzyme activity. We found that press (chronic) seawater additions increased porewater chloride and sulfate almost immediately, and ammonium and phosphate after 2–4 months. Chronic increases in salinity also decreased net ecosystem exchange, resulting in reduced CO2 and CH4 emissions from press plots. Our pulse treatment, designed to mimic natural salinity incursion in the Altamaha River (September and October), temporarily increased porewater ammonium concentrations but had few lasting effects on porewater chemistry or ecosystem carbon balance. Our findings suggest that long-term, chronic saltwater intrusion will lead to reduced C fixation and the potential for increased nutrient (N, P) export while acute pulses of saltwater will have temporary effects.  相似文献   

11.
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron‐molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo‐free nitrogenases that are less efficient at reducing N2 than Mo‐nitrogenase. To permit biogenesis of Mo‐nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high‐affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo‐nitrogenase genes, while it represses production of Mo‐free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo‐mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo‐responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.  相似文献   

12.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

13.
NifQ- mutants of Klebsiella pneumoniae are defective in nitrogen fixation due to an elevated requirement for molybdenum. When millimolar concentrations of molybdate were added to the medium, the effects of the nifQ mutations were suppressed. NifQ- mutants were not impaired in the uptake of molybdate, but molybdate accumulation was defective in these mutants. All of the nif-coded proteins were present in NifQ- cells derepressed in the absence of molybdenum. Molybdenum-activatable nitrogenase component I was found at the same level observed in the wild type. Molybdenum, thus, does not play a role in nif expression or in the short-term stability of nif-coded proteins. The defect in NifQ- mutants was in the incorporation of molybdenum into nitrogenase component I. The nifQ gene product acts together with the products of nifB, nifN, and nifE in the biosynthesis of the iron-molybdenum cofactor of nitrogenase.  相似文献   

14.
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron‐molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss‐of‐function mot1.21 mutant showed reduced growth compared with wild‐type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum‐dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen‐fixing nodules, since genetic complementation with a wild‐type MtMOT1.2 gene or molybdate‐fortification of the nutrient solution, both restored wild‐type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.  相似文献   

15.
Molybdate transport through the plant sulfate transporter SHST1   总被引:1,自引:0,他引:1  
Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein.  相似文献   

16.
Nitrogen fixation was measured by the acetylene reduction method in a high Arctic ecosystem at Kongsfjorden, Spitsbergen (79°N, 12°E). The most important source of biologically fixed nitrogen was found in cyanobacteria either as free living colonies ofNostoc sp. in wet unvegetated or sparsely vegetated grounds or growing as epiphytes on bryophytes. Fixation associated with plant roots or in soil and peat samples had little or no significance for nitrogen input to the ecosystem. The ability to support an epiphytic flora of nitrogen-fixing cyanobacteria varied greatly between bryophyte species.Calliergon richardsonii andSanionia uncinata seemed especially well adapted for harbouring epiphytic cyanobacteria, but the extent of nitrogen fixation varied with the growing location. The rate of nitrogen fixation was greatly influenced by grazing by geese. In a geese-grazing area values were found with a maximum of 693.6±1.5 nmol C2H4 h−1 g (dry weight)−1 while the maximum value for ungrazed areas was 65.3±16.6 nmol C2H4 h−1 g (dry weight)−1. In the grazed area cyanobacteria were also found fixing nitrogen epiphytically on grass. The high plant productivity, supporting heavy grazing, clearly indicates an effective transfer of fixed nitrogen to the plant community. Under cliffs harbouring colonies of birds, the biological nitrogen fixation was inhibited by bird droppings.  相似文献   

17.
18.
Diazotrophic cyanobacteria can take up combined nitrogen (nitrate, ammonium, amino acids, dissolved organic nitrogen) from solution, but the interaction between N2 fixation and uptake of combined nitrogen is not well understood. We studied the effects of combined nitrogen ) additions on N2 fixation rates in the cyanobacterium Trichodesmium erythraeum (IMS‐101) maintained in continuous culture in an N‐free medium (YBCII) and a 12:12‐h light:dark cycle. We measured acetylene reduction rates, nutrient concentrations, and biomass throughout the 12 h of illumination after the addition of nitrate (0.5–20 μM) at the start of the light period. Compared with unamended controls, Trichodesmium showed strong inhibition of acetylene reduction (up to 70%) in the presence of , with apparent saturation of the inhibition effect at an initial concentration of approximately 10 μM. The inhibition of acetylene reduction persisted through much of the light period as concentration in the culture vessel decreased. Recovery of N2 fixation was observed late in the light period in cultures amended with low concentrations of (<5 μM) when ambient concentrations had decreased to 0.3–0.4 μM in the culture vessel. Nitrate uptake accounted for as much as 86% of total N uptake and, at the higher treatment concentrations, more than made up for the observed decrease in N2 fixation rates. We conclude that Trichodesmium can obtain significant quantities of N through uptake of nitrate and does so in preference to N2 fixation when sufficient is available.  相似文献   

19.
In light of recent proposals that iron (Fe) availability may play an important role in controlling oceanic primary production and nutrient flux, its regulatory impact on N2 fixation and production dynamics was investigated in the widespread and biogeochemically important diazotrophic, planktonic cyanobacteria Trichodesmium spp. Fe additions, as FeCl3 and EDTA-chelated FeCl3, enhanced N2 fixation (nitrogenase activity), photosynthesis (CO2 fixation), and growth (chlorophyll a production) in both naturally occurring and cultured (on unenriched oligotrophic seawater) Trichodesmium populations. Maximum enhancement of these processes occurred under FeEDTA-amended conditions. On occasions, EDTA alone led to enhancement. No evidence for previously proposed molybdenum or phosphorus limitation was found. Our findings geographically extend support for Fe limitation of N2 fixation and primary production to tropical and subtropical oligotrophic ocean waters often characterized by Trichodesmium blooms.  相似文献   

20.
Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A–C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号